会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 13. 发明授权
    • Method for forming a chemical microreactor
    • 形成化学微反应器的方法
    • US07534402B2
    • 2009-05-19
    • US11196634
    • 2005-08-02
    • Jeffrey D. MorseAlan Jankowski
    • Jeffrey D. MorseAlan Jankowski
    • B01J19/24B81B1/00
    • B01J19/0093B01J2219/00783B01J2219/00824B01J2219/00828B01J2219/00831B01J2219/00835B01J2219/00844B01J2219/00871B01J2219/00873
    • Disclosed is a chemical microreactor that provides a means to generate hydrogen fuel from liquid sources such as ammonia, methanol, and butane through steam reforming processes when mixed with an appropriate amount of water. The microreactor contains capillary microchannels with integrated resistive heaters to facilitate the occurrence of catalytic steam reforming reactions. Two distinct embodiment styles are discussed. One embodiment style employs a packed catalyst capillary microchannel and at least one porous membrane. Another embodiment style employs a porous membrane with a large surface area or a porous membrane support structure containing a plurality of porous membranes having a large surface area in the aggregate, i.e., greater than about 1 m2/cm3. Various methods to form packed catalyst capillary microchannels, porous membranes and porous membrane support structures are also disclosed.
    • 公开了一种化学微反应器,其提供了当与适量的水混合时通过蒸汽重整过程从液体源例如氨,甲醇和丁烷产生氢燃料的手段。 微反应器包含具有集成电阻加热器的毛细管微通道,以促进催化蒸汽重整反应的发生。 讨论了两种不同的实施方式。 一种实施方案采用填充催化剂毛细管微通道和至少一种多孔膜。 另一种实施方案采用具有大表面积的多孔膜或多孔膜支撑结构,其包含多个聚集体中具有大表面积的多孔膜,即大于约1m 2 / cm 3。 还公开了形成填充催化剂毛细管微通道,多孔膜和多孔膜支撑结构的各种方法。
    • 15. 发明授权
    • Method of forming a package for mems-based fuel cell
    • 形成基于mems的燃料电池封装的方法
    • US06821666B2
    • 2004-11-23
    • US09967145
    • 2001-09-28
    • Jeffrey D. MorseAlan F. Jankowski
    • Jeffrey D. MorseAlan F. Jankowski
    • H01M810
    • H01M8/247H01M8/04007H01M8/2404H01M8/241Y10T29/49108Y10T29/4911Y10T29/49112Y10T29/49114Y10T29/53135Y10T156/1057
    • A MEMS-based fuel cell package and method thereof is disclosed. The fuel cell package comprises seven layers: (1) a sub-package fuel reservoir interface layer, (2) an anode manifold support layer, (3) a fuel/anode manifold and resistive heater layer, (4) a Thick Film Microporous Flow Host Structure layer containing a fuel cell, (5) an air manifold layer, (6) a cathode manifold support structure layer, and (7) a cap. Fuel cell packages with more than one fuel cell are formed by positioning stacks of these layers in series and/or parallel. The fuel cell package materials such as a molded plastic or a ceramic green tape material can be patterned, aligned and stacked to form three dimensional microfluidic channels that provide electrical feedthroughs from various layers which are bonded together and mechanically support a MEMOS-based miniature fuel cell. The package incorporates resistive heating elements to control the temperature of the fuel cell stack. The package is fired to form a bond between the layers and one or more microporous flow host structures containing fuel cells are inserted within the Thick Film Microporous Flow Host Structure layer of the package.
    • 公开了一种基于MEMS的燃料电池组件及其方法。 燃料电池组件包括七层:(1)一个子包装燃料储存器界面层,(2)一个阳极歧管支撑层,(3)燃料/阳极歧管和电阻加热器层,(4)厚膜微孔流 包含燃料电池的主体结构层,(5)空气歧管层,(6)阴极歧管支撑结构层,和(7)盖。 具有多于一个燃料电池的燃料电池组件通过将这些层的堆叠定位成串联和/或平行而形成。 诸如模制塑料或陶瓷生胶带材料的燃料电池封装材料可以被图案化,对准和堆叠以形成三维微流体通道,其提供来自各种层的电馈通,这些层通过粘合在一起并机械地支撑基于MEMOS的微型燃料电池 。 该封装包含电阻加热元件以控制燃料电池堆的温度。 烧结包装以形成层之间的结合,并且将一个或多个含有燃料电池的微孔流动主体结构插入到包装的厚膜微孔流动主体结构层内。
    • 16. 发明授权
    • Photodetector having high speed and sensitivity
    • 光电检测器具有高速度和灵敏度
    • US5051804A
    • 1991-09-24
    • US444339
    • 1989-12-01
    • Jeffrey D. MorseRaymond P. Mariella, Jr.
    • Jeffrey D. MorseRaymond P. Mariella, Jr.
    • H01L31/0304H01L31/08H01L31/09
    • H01L31/03046H01L31/085H01L31/09Y02E10/544
    • The present invention provides a photodetector having an advantageous combination of sensitivity and speed; it has a high sensitivity while retaining high speed. In a preferred embodiment, visible light is detected, but in some embodiments, x-rays can be detected, and in other embodiments infrared can be detected. The present invention comprises a photodetector having an active layer, and a recombination layer. The active layer has a surface exposed to light to be detected, and comprises a semiconductor, having a bandgap graded so that carriers formed due to interaction of the active layer with the incident radiation tend to be swept away from the exposed surface. The graded semiconductor material in the active layer preferably comprises Al.sub.1-x Ga.sub.x As. An additional sub-layer of graded In.sub.1-y Ga.sub.y As may be included between the Al.sub.1-x Ga.sub.x As layer and the recombination layer. The recombination layer comprises a semiconductor material having a short recombination time such as a defective GaAs layer grown in a low temperature process. The recombination layer is positioned adjacent to the active layer so that carriers from the active layer tend to be swept into the recombination layer. In an embodiment, the photodetector may comprise one or more additional layers stacked below the active and recombination layers. These additional layers may include another active layer and another recombination layer to absorb radiation not absorbed while passing through the first layers. A photodetector having a stacked configuration may have enhanced sensitivity and responsiveness at selected wavelengths such as infrared.
    • 本发明提供了具有灵敏度和速度的有利组合的光电检测器; 它具有高灵敏度,同时保持高速度。 在优选实施例中,检测到可见光,但是在一些实施例中,可以检测x射线,并且在其它实施例中可以检测到红外线。 本发明包括具有活性层的光电检测器和复合层。 有源层具有暴露于待检测光的表面,并且包括半导体,具有带隙分级,使得由于活性层与入射辐射的相互作用而形成的载流子倾向于从暴露表面扫过。 活性层中的分级半导体材料优选包含Al1-xGaxA。 在Al1-xGaxAs层和复合层之间可以包括附加的分级In1-yGayAs子层。 复合层包括具有短复合时间的半导体材料,例如在低温工艺中生长的不良GaAs层。 复合层定位成与有源层相邻,使得来自有源层的载流子倾向于被扫入复合层。 在一个实施例中,光电检测器可以包括在活性和复合层之下堆叠的一个或多个附加层。 这些附加层可以包括另一个活性层和另一个复合层,以吸收在通过第一层时不被吸收的辐射。 具有堆叠配置的光电检测器可以具有增强的灵敏度和选择的波长例如红外线的响应性。
    • 18. 发明授权
    • Solid oxide MEMS-based fuel cells
    • 固体氧化物基于MEMS的燃料电池
    • US07189471B2
    • 2007-03-13
    • US10637914
    • 2003-08-08
    • Alan F. JankowksiJeffrey D. Morse
    • Alan F. JankowksiJeffrey D. Morse
    • H01M8/04H01M8/12H01M8/24
    • H01M8/1097H01M8/1213H01M8/1286H01M8/241H01M8/2425H01M8/2485H01M2008/1293H01M2300/0074H01M2300/0082
    • A micro-electro-mechanical systems (MEMS) based thin-film fuel cells for electrical power applications. The MEMS-based fuel cell may be of a solid oxide type (SOFC), a solid polymer type (SPFC), or a proton exchange membrane type (PEMFC), and each fuel cell basically consists of an anode and a cathode separated by an electrolyte layer. The electrolyte layer can consist of either a solid oxide or solid polymer material, or proton exchange membrane electrolyte materials may be used. Additionally catalyst layers can also separate the electrodes (cathode and anode) from the electrolyte. Gas manifolds are utilized to transport the fuel and oxidant to each cell and provide a path for exhaust gases. The electrical current generated from each cell is drawn away with an interconnect and support structure integrated with the gas manifold. The fuel cells utilize integrated resistive heaters for efficient heating of the materials. By combining MEMS technology with thin-film deposition technology, thin-film fuel cells having microflow channels and full-integrated circuitry can be produced that will lower the operating temperature an will yield an order of magnitude greater power density than the currently known fuel cells.
    • 一种用于电力应用的基于微机电系统(MEMS)的薄膜燃料电池。 基于MEMS的燃料电池可以是固体氧化物型(SOFC),固体聚合物类型(SPFC)或质子交换膜型(PEMFC),并且每个燃料电池基本上由阳极和阴极分开 电解质层。 电解质层可以由固体氧化物或固体聚合物材料组成,也可以使用质子交换膜电解质材料。 此外,催化剂层还可以将电极(阴极和阳极)与电解质分离。 气体歧管用于将燃料和氧化剂输送到每个电池并提供废气的路径。 从每个电池产生的电流被吸入,与气体歧管集成的互连和支撑结构。 燃料电池利用集成的电阻加热器来有效地加热材料。 通过将MEMS技术与薄膜沉积技术相结合,可以生产具有微流通道和全集成电路的薄膜燃料电池,这将降低工作温度,与目前已知的燃料电池相比,功率密度将达到一个数量级。
    • 20. 发明授权
    • Method for fabrication of electrodes
    • 电极制造方法
    • US06753036B2
    • 2004-06-22
    • US09906913
    • 2001-07-16
    • Alan F. JankowskiJeffrey D. MorseRandy Barksdale
    • Alan F. JankowskiJeffrey D. MorseRandy Barksdale
    • B05D302
    • H01M4/8885H01M8/1004H01M8/1213H01M2008/1293Y10T29/49108Y10T29/49115
    • Described herein is a method to fabricate porous thin-film electrodes for fuel cells and fuel cell stacks. Furthermore, the method can be used for all fuel cell electrolyte materials which utilize a continuous electrolyte layer. An electrode layer is deposited on a porous host structure by flowing gas (for example, Argon) from the bottomside of the host structure while simultaneously depositing a conductive material onto the topside of the host structure. By controlling the gas flow rate through the pores, along with the process conditions and deposition rate of the thin-film electrode material, a film of a pre-determined thickness can be formed. Once the porous electrode is formed, a continuous electrolyte thin-film is deposited, followed by a second porous electrode to complete the fuel cell structure.
    • 这里描述了制造用于燃料电池和燃料电池堆的多孔薄膜电极的方法。 此外,该方法可以用于利用连续电解质层的所有燃料电池电解质材料。 通过从主体结构的底部流动气体(例如氩),同时将导电材料沉积到主体结构的顶侧上,将电极层沉积在多孔主体结构上。 通过控制通过孔的气体流速以及薄膜电极材料的工艺条件和沉积速率,可以形成预定厚度的膜。 一旦形成多孔电极,就沉积连续的电解质薄膜,然后沉积第二多孔电极以完成燃料电池结构。