会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 11. 发明授权
    • In situ exploitation of deep set porphyry ores
    • 深部斑岩矿的原位开采
    • US4291920A
    • 1981-09-29
    • US145379
    • 1980-04-30
    • Peter J. LinganeMichael J. RedmanWon C. ParkRobert A. HardWalter W. Harvey
    • Peter J. LinganeMichael J. RedmanWon C. ParkRobert A. HardWalter W. Harvey
    • E21B43/28
    • E21B43/28
    • Disclosed is a method of economically exploiting deep set porphyry ore bodies of the type containing metal values such as sulfidic copper nickel or uranium minerals and minerals capable of absorbing copper, uranium and nickel ions. The method involves establishing communication with the ore body through access and recovery wells and passing fluids sequentially therethrough. If necessary, thief zones of as low as 25 to 50 md in igneous rock of 1 to 5 md are prevented from distorting flow, by the injection of a polymeric solution of macromolecules with molecular weights of the order of 5 million along the entire wellbore, the higher permeability zones initially accepting the majority of the flow and being impaired at a much faster rate than the less permeable zones.In a first stage, the permeability of the leaching interval is stimulated as an ammoniated solution of sodium, potassium, or ammonium nitrate or chloride contacts calcium containing minerals to promote ion exchange, resulting in clay contraction or calcium carbonate dissolution. In a second stage, the leaching interval is primed as calcium ion is displaced with an aqueous solution of ammonium salt, a calcium sulfate scale inhibitor, and oxygen gas. In a third stage, a two-phase lixiviant comprising entrained oxygen containing bubbles and an ammoniacal leach liquor having a pH less than 10.5 and less than 1.0 mole/liter ammonia is passed through the leaching interval to solubilize copper, nickel, uranium and other metal values.
    • 公开了一种经济开采含有金属价值的深层斑岩矿体的方法,例如硫化铜镍或铀矿物和能够吸收铜,铀和镍离子的矿物。 该方法涉及通过进入和回收井和依次通过流体来与矿体建立通信。 如果需要,通过在整个井眼注入分子量为500万级的大分子聚合物溶液,防止1至5 md的火成岩中低至25 md的小偷区域扭曲流动, 较高的渗透性区域最初接受大部分流动并以比较不透水的区域快得多的速度受损。 在第一阶段,浸出间隔的渗透性被刺激为钠,钾或硝酸铵或氯化铵的氨化溶液与含钙矿物接触以促进离子交换,导致粘土收缩或碳酸钙溶解。 在第二阶段,浸出间隔是由钙离子与铵盐水溶液,硫酸钙垢抑制剂和氧气置换而引发的。 在第三阶段中,将包含夹带氧气体的两相浸滤液和pH小于10.5且小于1.0摩尔/升氨的氨浸出液通过浸出间隔以溶解铜,镍,铀等金属 价值观。
    • 12. 发明授权
    • Recovery of shale oil and magnesia from oil shale
    • 从油页岩中回收页岩油和氧化镁
    • US4171146A
    • 1979-10-16
    • US871367
    • 1978-01-23
    • Robert A. Hard
    • Robert A. Hard
    • E21B43/247E21B43/28E21C41/10
    • E21B43/247E21B43/28
    • A fragmented permeable mass of formation particles containing oil shale and carbonates of calcium and magnesium is formed in an in situ oil shale retort. A combustion zone is advanced through the fragmented mass, whereby kerogen in oil shale in the fragmented mass is decomposed in a retorting zone on the advancing side of the combustion zone to produce gaseous and liquid products including shale oil, and particles containing retorted oil shale are combusted for converting magnesium values to more leachable form such as magnesium oxide. Magnesium values are leached from the combusted particles selectively with respect to calcium compounds and silicates with aqueous solutions of a purgeable, acid-forming gas such as carbon dioxide or sulfur dioxide. An enriched solution containing magnesium values is withdrawn from the fragmented mass and magnesia is recovered from such enriched solution.
    • 在原位油页岩蒸馏器中形成含有油页岩和钙和镁的碳酸盐的地层颗粒碎裂的渗透物质。 燃烧区通过破碎物质前进,由此碎片中的油页岩中的油母质在燃烧区前进侧的蒸煮区中分解,产生包括页岩油在内的气态和液体产物,含有蒸馏油页岩的颗粒为 燃烧用于将镁值转化为更易浸出的形式,如氧化镁。 相对于钙化合物和硅酸盐,通过可清除的,形成酸的气体如二氧化碳或二氧化硫的水溶液选择性地从燃烧的颗粒中浸出镁值。 将含有镁值的富集溶液从碎裂的物质中取出,从富集溶液中回收氧化镁。
    • 14. 发明授权
    • Recovery of metal values from process residues
    • 从工艺残留物回收金属值
    • US5437848A
    • 1995-08-01
    • US911435
    • 1992-07-10
    • Robert A. Hard
    • Robert A. Hard
    • B01D11/02C01B7/19C01G33/00C01G35/00C01G43/00C01G56/00C02F11/00C22B3/20C22B34/20C22B34/24C22B60/02C01G57/00
    • C22B60/0252C01B7/191C01G33/003C01G35/003C22B34/24C22B60/0234Y02P10/212
    • A process for recovering metal and acid values from a source material containing metallic fluorides comprises digesting the source material in sulfuric acid to form a slurry, separating a fluoride containing solid phase and a metal containing first liquid phase. The solid phase is subjected to pyrohydrolysis, sulfuric and hydrofluoric acids are recovered, and the first liquid phase is processed to recover the metal values by solvent extraction or ion exchanges. The tantalum values are extracted from the first liquid aqueous phase by a water immiscible organic extractant such as methylisobutyl ketone to form a first liquid organic phase containing tantalum and a second liquid aqueous phase. The tantalum is stripped from the first organic phase using water. The process includes the additional steps of heating the separated solid phase from about ambient temperature to an elevated temperature in the presence of water vapor to evolve sulfuric acid and render the gangue chemically inert. When the source material contains uranium the digestion step reduces the amount of gangue present in the radioactive source. The process can include the additional steps of removing uranium from the second liquid aqueous phase by either an ion exchange resin or by solvent extraction using a water immiscible organic extractant to yield a uranium depleted aqueous phase which can be treated with an aqueous solution of calcium oxide. Sulfuric acid and the organic extractant for extracting uranium can be recycled if desired.
    • 从含有金属氟化物的源材料中回收金属和酸值的方法包括在硫酸中消化源材料以形成浆料,分离含氟化物固相和含有第一液相的金属。 将固相进行热解,回收硫酸和氢氟酸,并通过溶剂萃取或离子交换处理第一液相以回收金属值。 通过与水不混溶的有机萃取剂如甲基异丁基酮从第一液体水相中提取钽值,以形成含有钽和第二液体水相的第一液体有机相。 使用水从第一有机相剥离钽。 该方法包括在水蒸气存在下将分离的固相从大约环境温度加热到升高的温度的步骤,以释放出硫酸,并使得脉石在化学上是惰性的。 当源材料含有铀时,消化步骤减少了放射源中存在的脉石量。 该方法可以包括通过离子交换树脂从第二液体水相中除去铀或通过使用与水不混溶的有机萃取剂进行溶剂萃取来除去铀的附加步骤,以产生可用氧化钙水溶液处理的贫铀水相 。 如果需要,可以回收硫酸和用于提取铀的有机萃取剂。
    • 15. 发明授权
    • Recovering metal values from geothermal brine
    • 从地热盐水回收金属值
    • US4602820A
    • 1986-07-29
    • US610258
    • 1984-05-14
    • Robert A. Hard
    • Robert A. Hard
    • C22B3/00C22B3/46C22B15/00E21B43/28E21B43/34C22B11/04C22B13/04C22B15/12C22B25/04
    • E21B43/34C22B11/04C22B13/04C22B15/0091C22B25/04C22B3/46E21B43/28Y02P10/234Y02P10/236
    • A process is provided for recovering valuable metals from geothermal brine comprising introducing donor metallic particles into a geothermal zone which is dominated with hot-pressurized geothermal brine which contains a metal value selected from the group consisting of gold value, silver value, copper value, lead value, tin value and mixtures thereof. The donor metallic particle contains a donor metal selected from the group consisting of iron, zinc, aluminum and mixtures thereof. The process further comprises forming a deposit on the donor metallic particles by replacing at least a part of the donor particle with the metal values, producing a stream of the hot-pressurized geothermal brine containing the donor metallic particles which, in turn, contain the deposit of metal values, and separating the donor metallic particles from the thusly produced stream of hot-pressurized geothermal brine.
    • 提供了一种从地热盐水中回收有价金属的方法,包括将供体金属颗粒引入地热区,该地热区主要由热压地热盐水组成,其中含有选自金值,银值,铜值,铅 值,锡值及其混合物。 供体金属颗粒含有选自铁,锌,铝及其混合物的供体金属。 该方法还包括通过用供给金属颗粒代替至少一部分供体颗粒,在供体金属颗粒上形成沉积物,产生含有供体金属颗粒的热压地热盐水,其又含有沉积物 的金属值,并将供体金属颗粒与如此产生的热压地热卤水流分离。
    • 17. 发明授权
    • Process for making titanium metal from titanium ore
    • 从钛矿制造钛金属的工艺
    • US4390365A
    • 1983-06-28
    • US216058
    • 1980-12-15
    • Robert A. HardMartin A. Prieto
    • Robert A. HardMartin A. Prieto
    • C01G23/02C22B34/12C01G23/047
    • C01G23/028C22B34/1222C22B34/1277Y02P10/23
    • The instant invention relates to a process for the preparation of titanium metal from an ore comprising titanium oxides which process comprises the steps of fluorinating the ore to convert the titanium oxides to titanium fluorides and then reducing the titanium fluorides to the metal. Such reduction may be carried out by contacting the titanium fluorides as a molten salt mixture with a molten alloy of zinc and aluminum at conditions whereby titanium is converted into a titanium-zinc alloy and the aluminum is converted into fluorides of aluminum. The titanium zinc alloy is separated from the fluorides of aluminum and the zinc is distilled from the alloy to leave behind titanium sponge. The ore may be an ilmenite ore and the fluorination may be carried out by contacting said ilmenite ore with a fluosilicate salt such as sodium fluosilicate.
    • 本发明涉及一种从包含钛氧化物的矿石制备钛金属的方法,该方法包括以下步骤:使矿石氟化,将钛氧化物转化为氟化钛,然后将氟化钛还原成金属。 在将钛转化为钛 - 锌合金并将铝转化成铝的氟化物的条件下,可以通过使作为熔融盐混合物的氟化钛与锌和铝的熔融合金接触而进行这种还原。 将钛锌合金与铝的氟化物分离,并从合金中蒸馏出锌,留下钛海绵。 矿石可以是钛铁矿矿石,并且氟化可以通过使所述钛铁矿矿石与氟硅酸盐如氟硅酸盐接触来进行。
    • 18. 发明授权
    • Process for reducing phosphate ore
    • 减少磷矿的工艺
    • US4351809A
    • 1982-09-28
    • US265305
    • 1981-05-20
    • Joseph A. MegyRobert A. Hard
    • Joseph A. MegyRobert A. Hard
    • C01B25/027C01B25/12C01B25/20C01B25/01
    • C01B25/12C01B25/027C01B25/20
    • A process for reducing phosphate ore includes beneficiating phosphate ore to reduce alumina impurities while allowing fluoride impurities to remain in the beneficiated ore, mixing beneficiated ore with solid carbonaceous material to form a porous bed of agglomerated feed and heating the porous bed in a rotary-type kiln to produce elemental phosphorus and carbon monoxide. The elemental phosphorus may be burned within the kiln to provide heat to the porous bed and an inert gas may be purged through the porous bed to drive the reaction between the phosphate ore and the solid carbonaceous material towards complete reduction of the phosphate ore by removal of carbon monoxide from the porous bed.
    • 一种还原磷矿的方法包括选矿磷矿,以减少氧化铝杂质,同时使氟化物杂质残留在精选矿石中,将精矿与固体碳质材料混合,形成聚集进料的多孔床,并以旋转式 窑生产元素磷和一氧化碳。 元素磷可以在窑内燃烧以向多孔床提供热量,并且可以通过多孔床吹扫惰性气体以驱动磷酸盐矿石和固体碳质材料之间的反应,以通过去除磷酸盐矿石来完全还原磷酸盐矿石 来自多孔床的一氧化碳。
    • 19. 发明授权
    • Method for producing magnesium metal from molten salt
    • 从熔盐生产镁金属的方法
    • US4298437A
    • 1981-11-03
    • US115597
    • 1980-01-25
    • Robert A. Hard
    • Robert A. Hard
    • C25C3/04
    • C25C3/04
    • The instant invention relates to a method for making magnesium metal by reducing a magnesium metal precursor in an electrochemical cell wherein the cathode is a molten silicon alloy. Magnesium metal is formed at the interface of the silicon alloy and the magnesium metal precursor (or the molten salt if the magnesium metal precursor is suspended as finely divided particles in a molten salt) and subsequently combines with said silicon alloy. The silicon alloy containing combined magnesium metal is removed from said cell to a magnesium metal removal zone wherein an inert gas is passed through the alloy at a temperature and pressure sufficient to remove the magnesium metal as a vapor overhead. The magnesium metal is recovered and the silicon alloy, depleted in magnesium, is returned to the cell for further use as a cathode.
    • 本发明涉及通过在电化学电池中还原镁金属前体来制备镁金属的方法,其中阴极是熔融硅合金。 在硅合金和镁金属前体的界面处形成镁金属(或者如果镁金属前体作为熔融盐中的细碎颗粒悬浮)并且随后与所述硅合金结合,则形成金属镁。 将含有组合的镁金属的硅合金从所述电池移除到镁金属去除区,其中惰性气体在足够的温度和压力下通过合金,以除去作为蒸汽塔顶馏出物的金属镁。 回收镁金属,将镁耗尽的硅合金返回到电池作为阴极进一步使用。