会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 11. 发明申请
    • Method and system for media audience measurement and spatial extrapolation based on site, display, crowd, and viewership characterization
    • 基于网站,展示,人群和观众特征的媒体观众测量和空间外推的方法和系统
    • US20090158309A1
    • 2009-06-18
    • US12001611
    • 2007-12-12
    • Hankyu MoonRajeev SharmaNamsoon Jung
    • Hankyu MoonRajeev SharmaNamsoon Jung
    • H04H60/33
    • H04N21/44218G06K9/00778H04H60/33H04N21/4223
    • The present invention provides a comprehensive method to design an automatic media viewership measurement system, from the problem of sensor placement for an effective sampling of the viewership to the method of extrapolating spatially sampled viewership data. The system elements that affect the viewership—site, display, crowd, and audience—are identified first. The site-viewership analysis derives some of the crucial elements in determining an effective data sampling plan: visibility, occupancy, and viewership relevancy. The viewership sampling map is computed based on the visibility map, the occupancy map, and the viewership relevancy map; the viewership measurement sensors are placed so that the sensor coverage maximizes the viewership sampling map. The crowd-viewership analysis derives a model of the viewership in relation to the system parameters so that the viewership extrapolation can effectively adapt to the time-changing spatial distribution of the viewership; the step identifies crowd dynamics, and its invariant features as the crucial elements that extract the influence of the site, display, and the crowd to the temporal changes of viewership. The extrapolation map is formulated around these quantities, so that the site-wide viewership can be effectively estimated from the sampled viewership measurement.
    • 本发明提供了一种全面的方法来设计一种自动媒体观看量度系统,从传感器放置的问题出发,将收视率有效抽样的方法推广到空间采样的收视率数据外推法。 影响观众网站,展示,人群和观众的系统元素首先被识别。 站点收视率分析得出了确定有效数据抽样计划的一些关键因素:可见度,占用率和观众关联度。 基于可见度图,占用地图和观看者相关性图来计算观众抽样图; 放置观众测量传感器,使得传感器覆盖最大化观众抽样图。 人群观众分析得出与体系参数相关的观众模型,使得观众推论能够有效地适应观众的时空变化空间分布; 该步骤确定人群动态,其不变特征作为提取站点影响力,显示和人群对观看时间变化的关键要素。 外推图是围绕这些数量制定的,因此可以从采样的收视率测量中有效地估计网站范围的收视率。
    • 12. 发明授权
    • Method and system for measuring shopper response to products based on behavior and facial expression
    • 基于行为和面部表情测量购物者对产品的反应的方法和系统
    • US08219438B1
    • 2012-07-10
    • US12215879
    • 2008-06-30
    • Hankyu MoonRajeev SharmaNamsoon Jung
    • Hankyu MoonRajeev SharmaNamsoon Jung
    • G06Q10/00
    • G06Q30/0201G06Q30/0202G06Q30/0204
    • The present invention is a method and system for measuring human response to retail elements, based on the shopper's facial expressions and behaviors. From a facial image sequence, the facial geometry—facial pose and facial feature positions—is estimated to facilitate the recognition of facial expressions, gaze, and demographic categories. The recognized facial expression is translated into an affective state of the shopper and the gaze is translated into the target and the level of interest of the shopper. The body image sequence is processed to identify the shopper's interaction with a given retail element—such as a product, a brand, or a category. The dynamic changes of the affective state and the interest toward the retail element measured from facial image sequence is analyzed in the context of the recognized shopper's interaction with the retail element and the demographic categories, to estimate both the shopper's changes in attitude toward the retail element and the end response—such as a purchase decision or a product rating.
    • 本发明是一种用于根据购物者的面部表情和行为测量人对零售元素的反应的方法和系统。 从面部图像序列中,面部几何面部姿势和面部特征位置被估计为便于识别面部表情,凝视和人口统计学类别。 公认的面部表情被转化为购物者的情感状态,并将目光转化为目标和购物者的兴趣水平。 处理身体图像序列以识别购物者与给定零售元件(例如产品,品牌或类别)的交互。 在识别购物者与零售元素和人口特征类别的相互作用的背景下分析情感状态的动态变化以及从面部图像序列测量的零售元素的兴趣,以估计购物者对零售元素的态度变化 和结束响应 - 例如购买决定或产品评级。
    • 13. 发明授权
    • Method for augmenting transaction data with visually extracted demographics of people using computer vision
    • 通过使用计算机视觉的人的视觉提取的人口统计学来增加交易数据的方法
    • US08010402B1
    • 2011-08-30
    • US12386654
    • 2009-04-21
    • Rajeev SharmaHankyu MoonVarij SaurabhNamsoon Jung
    • Rajeev SharmaHankyu MoonVarij SaurabhNamsoon Jung
    • G06Q10/00G06Q30/00G06Q90/00
    • G06Q10/00G06Q30/00G06Q30/0201G06Q30/0251G06Q99/00
    • The present invention is a system and framework for augmenting any retail transaction system with information about the involved customers. This invention provides a method to combine the transaction data records and a customer or a group of customers with the automatically extracted demographic features (e.g., gender, age, and ethnicity), shopping group information, and behavioral information using computer vision algorithms. First, the system detects faces from face view, tracks them individually, and estimates poses of each of the tracked faces to normalize. These facial images are processed by the demographics classification module to determine and record the demographics feature vector. The system detects and tracks customers to analyze the dynamic behavior of the tracked customers so that their shopping group membership and checkout behavior can be recognized. Then the instances of faces and the instances of bodies can be matched and combined. Finally, the transaction data from the transaction data and the demographics, group, and checkout behavior data that belong to the same person or the same group of people are combined.
    • 本发明是用于利用关于所涉及的客户的信息来增加任何零售交易系统的系统和框架。 本发明提供了一种使用计算机视觉算法将交易数据记录与客户或一组客户结合自动提取的人口特征(例如,性别,年龄和种族),购物组信息和行为信息的方法。 首先,系统从脸部视图检测面部,分别跟踪它们,并估计每个跟踪面的姿态进行归一化。 这些面部图像由人口统计分类模块处理,以确定和记录人口统计特征向量。 系统检测并跟踪客户分析跟踪客户的动态行为,以便识别其购物组成员资格和结帐行为。 然后可以匹配和组合面部和实体的实例。 最后,来自交易数据的交易数据以及属于同一人或同一群人的人口统计,群体和结帐行为数据相结合。
    • 14. 发明授权
    • Method and system for determining the age category of people based on facial images
    • 基于面部图像确定人群年龄类别的方法和系统
    • US07912246B1
    • 2011-03-22
    • US12011748
    • 2008-01-29
    • Hankyu MoonRajeev SharmaNamsoon Jung
    • Hankyu MoonRajeev SharmaNamsoon Jung
    • G06K9/00
    • G06K9/6214G06K9/00221G06K9/6267G06K2009/00322
    • The present invention is a system and method for performing age classification or age estimation based on the facial images of people, using multi-category decomposition architecture of classifiers. In the multi-category decomposition architecture, which is a hybrid multi-classifier architecture specialized to age classification, the task of learning the concept of age against significant within-class variations, is handled by decomposing the set of facial images into auxiliary demographics classes, and the age classification is performed by an array of classifiers where each classifier, called an auxiliary class machine, is specialized to the given auxiliary class. The facial image data is annotated to assign the gender and ethnicity labels as well as the age labels. Each auxiliary class machine is trained to output both the given auxiliary class membership likelihood and the age group likelihoods. Faces are detected from the input image and individually tracked. Age sensitive feature vectors are extracted from the tracked faces and are fed to all of the auxiliary class machines to compute the desired likelihood outputs. The outputs from all of the auxiliary class machines are combined in a manner to make a final decision on the age of the given face.
    • 本发明是使用分类器的多类别分解架构,基于人脸的图像来进行年龄分类或年龄估计的系统和方法。 在多类别分解架构中,它是专门用于年龄分类的混合多分类器架构,通过将面部图像集合分解为辅助人口统计学类来处理年龄对概念内部变化的概念的任务, 并且年龄分类由分类器阵列执行,其中每个分类器(称为辅助类机器)专用于给定的辅助类。 注释面部图像数据以分配性别和种族标签以及年龄标签。 每个辅助类机器被训练以输出给定辅助类隶属度可能性和年龄组可能性。 从输入图像检测面部并单独跟踪。 从跟踪面提取年龄敏感特征向量,并将其馈送到所有辅助类机器以计算所需似然输出。 所有辅助类机器的输出结合起来,对给定面孔的年龄进行最终决定。
    • 15. 发明授权
    • Method and system for age estimation based on relative ages of pairwise facial images of people
    • 基于成人面部人脸相对年龄的年龄估计方法与系统
    • US08520906B1
    • 2013-08-27
    • US12283595
    • 2008-09-12
    • Hankyu MoonRajeev SharmaNamsoon Jung
    • Hankyu MoonRajeev SharmaNamsoon Jung
    • G06K9/00G06K9/46G06K9/66G06K9/62
    • G06K9/6292G06K9/6263G06K2009/00322
    • The present invention is a system and method for estimating the age of people based on their facial images. It addresses the difficulty of annotating the age of a person from facial image by utilizing relative age (such as older than, or younger than) and face-based class similarity (gender, ethnicity or appearance-based cluster) of sampled pair-wise facial images. It involves a unique method for the pair-wise face training and a learning machine (or multiple learning machines) which output the relative age along with the face-based class similarity, of the pairwise facial images. At the testing stage, the given input face image is paired with some number of reference images to be fed to the trained machines. The age of the input face is determined by comparing the estimated relative ages of the pairwise facial images to the ages of reference face images. Because age comparison is more meaningful when the pair belongs to the same demographics category (such as gender and ethnicity) or when the pair has similar appearance, the estimated relative ages are weighted according to the face-based class similarity score between the reference face and the input face.
    • 本发明是一种基于面部图像来估计人的年龄的系统和方法。 它解决了通过利用抽样对面面部的相对年龄(如年龄大于或小于)和基于脸部类别(性别,种族或出现的群集)来标注个人年龄的难度 图片。 它涉及成对面部训练的独特方法和一种学习机器(或多个学习机器),其输出成对面部图像的面部类似度的相对年龄。 在测试阶段,给定的输入面部图像与一些数量的参考图像配对,以供给训练有素的机器。 通过将成对面部图像的估计相对年龄与参考面部图像的年龄进行比较来确定输入面的年龄。 因为年龄比较更有意义,当该对属于相同的人口统计学类别(如性别和种族)时,或者对具有相似的外观时,估计的相对年龄会根据参考面和 输入面。
    • 16. 发明授权
    • Method and system for measuring emotional and attentional response to dynamic digital media content
    • 用于衡量对动态数字媒体内容的情感和注意反应的方法和系统
    • US08401248B1
    • 2013-03-19
    • US12317917
    • 2008-12-30
    • Hankyu MoonRajeev SharmaNamsoon Jung
    • Hankyu MoonRajeev SharmaNamsoon Jung
    • G06K9/00
    • G06K9/00302G06K9/00315G06K9/00597G06Q30/0242
    • The present invention is a method and system to provide an automatic measurement of people's responses to dynamic digital media, based on changes in their facial expressions and attention to specific content. First, the method detects and tracks faces from the audience. It then localizes each of the faces and facial features to extract emotion-sensitive features of the face by applying emotion-sensitive feature filters, to determine the facial muscle actions of the face based on the extracted emotion-sensitive features. The changes in facial muscle actions are then converted to the changes in affective state, called an emotion trajectory. On the other hand, the method also estimates eye gaze based on extracted eye images and three-dimensional facial pose of the face based on localized facial images. The gaze direction of the person, is estimated based on the estimated eye gaze and the three-dimensional facial pose of the person. The gaze target on the media display is then estimated based on the estimated gaze direction and the position of the person. Finally, the response of the person to the dynamic digital media content is determined by analyzing the emotion trajectory in relation to the time and screen positions of the specific digital media sub-content that the person is watching.
    • 本发明是一种方法和系统,其基于他们的面部表情的变化和对特定内容的关注,提供人们对动态数字媒体的响应的自动测量。 首先,该方法检测和跟踪观众的面孔。 然后通过应用情感敏感的特征过滤器,将每个面部和面部特征进行本地化,以提取面部的情感敏感特征,以基于提取的情感敏感特征来确定面部的面部肌肉动作。 然后将面部肌肉动作的变化转化为情感状态的变化,称为情绪轨迹。 另一方面,该方法还基于基于局部面部图像的提取的眼睛图像和面部的三维面部姿态来估计眼睛凝视。 人的视线方向是根据估计的眼睛凝视度和人的三维面部姿态来估计的。 然后基于估计的注视方向和人的位置来估计媒体显示器上的目标目标。 最后,通过分析与该人正在观看的特定数字媒体子内容的时间和屏幕位置相关的情绪轨迹来确定该人对动态数字媒体内容的响应。
    • 17. 发明授权
    • Automatic detection and aggregation of demographics and behavior of people
    • 人口统计学和人际行为的自动检测和聚合
    • US08351647B2
    • 2013-01-08
    • US12002398
    • 2007-12-17
    • Rajeev SharmaHankyu MoonNamsoon Jung
    • Rajeev SharmaHankyu MoonNamsoon Jung
    • G06K9/00G06Q30/00
    • G06Q30/02
    • The present invention is a system and framework for automatically measuring and correlating visual characteristics of people and accumulating the data for the purpose of demographic and behavior analysis. The demographic and behavior characteristics of people are extracted from a sequence of images using techniques from computer vision. The demographic and behavior characteristics are combined with a timestamp and a location marker to provide a feature vector of a person at a particular time at a particular location. These feature vectors are then accumulated and aggregated automatically in order to generate a data set that can be statistically analyzed, data mined and/or queried.
    • 本发明是用于自动测量和关联人的视觉特征并且为了人口和行为分析的目的而累积数据的系统和框架。 使用计算机视觉技术从图像序列中提取人的人口和行为特征。 人口统计学和行为特征与时间戳和位置标记组合,以在特定位置处的特定时间提供人的特征向量。 然后,这些特征向量自动累积和聚合,以便生成可以进行统计分析,数据挖掘和/或查询的数据集。
    • 18. 发明授权
    • Method and system for finding correspondence between face camera views and behavior camera views
    • 用于查找面部摄像机视图和行为摄像机视图之间的对应关系的方法和系统
    • US08254633B1
    • 2012-08-28
    • US12386656
    • 2009-04-21
    • Hankyu MoonRajeev SharmaNamsoon Jung
    • Hankyu MoonRajeev SharmaNamsoon Jung
    • G06K9/62
    • G06K9/00771
    • The present invention is a method and system to provide correspondences between a face camera track and a behavior camera track, for the purpose of making correspondence between the data obtained from each track. First, multiple learning machines are trained so that each of the machines processes pairwise person images from a specific pose region, and estimates the likelihood of two person images belonging to the same person based on image appearances. Then, the system acquires a person image associated with a behavior camera track, determines the pose of the person image based on its floor position, and corrects the pose of the person image. The system also acquires person images from face camera images associated with a face camera track, and combines the images with corrected person images from the previous step to form pairwise person images. The pairwise person image is fed to the trained pose-dependent pairwise person verification machines according to the pose of the person images, to compute the appearance match scores between the pair of person images. Finally, the combination of the appearance match scores and the spatiotemporal match scores of the pair of person images determines whether or not the person images belong to the same person.
    • 本发明是为了使得从每个轨道获得的数据之间的对应关系,提供面部照相机轨道和行为摄像机轨道之间的对应的方法和系统。 首先,训练多个学习机器,使得每个机器从特定的姿势区域处理成对的人物图像,并且基于图像外观来估计属于同一个人的两个人物图像的可能性。 然后,系统获取与行为相机轨迹相关联的人物图像,基于其楼层位置确定人物图像的姿势,并且校正人物图像的姿势。 该系统还从与脸部相机轨迹相关联的面部摄像机图像中获取人物图像,并且将图像与来自前一步骤的校正的人物图像组合以形成成对的人物图像。 根据人物图像的姿态将成对人物图像馈送到经过训练的姿势依赖成对人身份验证机,以计算一对人物图像之间的外观匹配得分。 最后,一对人物图像的外观匹配分数和时空匹配分数的组合确定人物图像是否属于同一人物。
    • 19. 发明授权
    • Method and system for robust human gender recognition using facial feature localization
    • 使用面部特征定位的强大的人类性别识别方法和系统
    • US08027521B1
    • 2011-09-27
    • US12079276
    • 2008-03-25
    • Hankyu MoonRajeev SharmaNamsoon Jung
    • Hankyu MoonRajeev SharmaNamsoon Jung
    • G06K9/62
    • G06K9/00288
    • The present invention is a method and system to provide a face-based automatic gender recognition system that utilizes localized facial features and hairstyles of humans. Given a human face detected from a face detector, it is accurately localized to facilitate the facial/hair feature detection and localization. Facial features are more finely localized using the geometrically distributed learning machines. Then the position, size, and appearance information of the facial features are extracted. The facial feature localization essentially decouples geometric and appearance information about facial features, so that a more explicit comparison can be made at the recognition stage. The hairstyle features that possess useful gender information are also extracted based on the hair region segmented, using the color discriminant analysis and the estimated geometry of the face. The gender-sensitive feature vector, made up from the extracted facial and hairstyle features, is fed to the gender recognition machines that have been trained using the same kind of gender-sensitive feature vectors of gallery images.
    • 本发明是一种提供基于脸部的自动性别识别系统的方法和系统,其利用人的局部面部特征和发型。 鉴于从面部检测器检测到的人脸,它被精确定位以便于面部/头发特征检测和定位。 面部特征使用几何分布式学习机器更精细地定位。 然后提取面部特征的位置,大小和外观信息。 面部特征定位基本上解除了关于面部特征的几何和外观信息,从而可以在识别阶段进行更明确的比较。 还使用颜色判别分析和面部估计的几何形状,基于分割的毛发区域提取具有有用性别信息的发型特征。 由提取的面部和发型特征组成的对性别敏感的特征向量被馈送到使用相同种类的对图像图像的性别敏感特征向量训练的性别识别机器。
    • 20. 发明授权
    • Method and system for estimating gaze target, gaze sequence, and gaze map from video
    • 用于从视频估计注视目标,注视序列和凝视图的方法和系统
    • US07742623B1
    • 2010-06-22
    • US12221552
    • 2008-08-04
    • Hankyu MoonRajeev SharmaNamsoon Jung
    • Hankyu MoonRajeev SharmaNamsoon Jung
    • G06K9/00
    • G06K9/00604G06K9/00228
    • The present invention is a method and system to estimate the visual target that people are looking, based on automatic image measurements. The system utilizes image measurements from both face-view cameras and top-down view cameras. The cameras are calibrated with respect to the site and the visual target, so that the gaze target is determined from the estimated position and gaze direction of a person. Face detection and two-dimensional pose estimation locate and normalize the face of the person so that the eyes can be accurately localized and the three-dimensional facial pose can be estimated. The eye gaze is estimated based on either the positions of localized eyes and irises or on the eye image itself, depending on the quality of the image. The gaze direction is estimated from the eye gaze measurement in the context of the three-dimensional facial pose. From the top-down view the body of the person is detected and tracked, so that the position of the head is estimated using a body blob model that depends on the body position in the view. The gaze target is determined based on the estimated gaze direction, estimated head pose, and the camera calibration. The gaze target estimation can provide a gaze trajectory of the person or a collective gaze map from many instances of gaze.
    • 本发明是基于自动图像测量来估计人们正在寻找的视觉目标的方法和系统。 该系统利用来自面视摄像机和自顶向下摄像机的图像测量。 摄像机相对于场地和视觉目标进行校准,从而根据人的估计位置和视线方向确定目标目标。 面部检测和二维姿态估计定位和归一化人脸,使眼睛能够被精确定位,并且可以估计三维面部姿势。 根据图像的质量,基于局部眼睛和虹膜的位置或眼睛图像本身来估计眼睛注视。 在三维面部姿势的背景下,从眼睛注视测量估计视线方向。 从自上而下的视角,人体的身体被检测和跟踪,以便使用取决于视图中的身体位置的身体斑点模型来估计头部的位置。 目标目标是根据估计的注视方向,估计头部姿态和相机校准来确定的。 注视目标估计可以从许多注视情况提供人的凝视轨迹或集体凝视图。