会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 11. 发明授权
    • Kiln thermal and combustion control
    • 窑炉和燃烧控制
    • US07024252B2
    • 2006-04-04
    • US11234927
    • 2005-09-26
    • Gregory D. MartinEugene BoeStephen PicheJames David KeelerDouglas TimmerMark GerulesJohn P. Havener
    • Gregory D. MartinEugene BoeStephen PicheJames David KeelerDouglas TimmerMark GerulesJohn P. Havener
    • G05B13/02
    • G05B13/048G05B13/042G05B17/02
    • A method and apparatus for controlling a non-linear mill. A linear controller is provided having a linear gain k that is operable to receive inputs representing measured variables of the plant and predict on an output of the linear controller predicted control values for manipulatible variables that control the plant. A non-linear model of the plant is provided for storing a representation of the plant over a trained region of the operating input space and having a steady-state gain K associated therewith. The gain k of the linear model is adjusted with the gain K of the non-linear model in accordance with a predetermined relationship as the measured variables change the operating region of the input space at which the linear controller is predicting the values for the manipulatible variables. The predicted manipulatible variables are then output after the step of adjusting the gain k.
    • 一种用于控制非线性磨机的方法和装置。 提供具有线性增益k的线性控制器,其可操作以接收表示工厂的测量变量的输入,并且对线性控制器的输出预测用于控制工厂的操纵性变量的预测控制值。 提供工厂的非线性模型,用于在工作输入空间的经过训练的区域上存储工厂的表示,并具有与其相关联的稳态增益K. 线性模型的增益k根据预定的关系用非线性模型的增益K进行调整,因为测量的变量改变了线性控制器预测操作变量的值的输入空间的操作区域 。 然后在调整增益k的步骤之后输出预测的操纵变量。
    • 14. 发明申请
    • Method and apparatus for modeling dynamic and steady-state processes for prediction, control and optimization
    • 用于预测,控制和优化的动态和稳态过程建模的方法和装置
    • US20050075737A1
    • 2005-04-07
    • US10847211
    • 2004-05-17
    • Gregory MartinEugene BoeStephen PicheJames KeelerDouglas TimmerMark GerulesJohn Havener
    • Gregory MartinEugene BoeStephen PicheJames KeelerDouglas TimmerMark GerulesJohn Havener
    • G05B13/02G05B13/04G05B17/02G05B21/02
    • G05B17/02G05B13/048
    • A method for providing independent static and dynamic models in a prediction, control and optimization environment utilizes an independent static model (20) and an independent dynamic model (22). The static model (20) is a rigorous predictive model that is trained over a wide range of data, whereas the dynamic model (22) is trained over a narrow range of data. The gain K of the static model (20) is utilized to scale the gain k of the dynamic model (22). The forced dynamic portion of the model (22) referred to as the bi variables are scaled by the ratio of the gains K and k. The bi have a direct effect on the gain of a dynamic model (22). This is facilitated by a coefficient modification block (40). Thereafter, the difference between the new value input to the static model (20) and the prior steady-state value is utilized as an input to the dynamic model (22). The predicted dynamic output is then summed with the previous steady-state value to provide a predicted value Y. Additionally, the path that is traversed between steady-state value changes.
    • 在预测,控制和优化环境中提供独立的静态和动态模型的方法使用独立的静态模型(20)和独立的动态模型(22)。 静态模型(20)是一种严格的预测模型,可在广泛的数据范围内进行训练,而动态模型(22)则是在窄范围的数据上进行训练。 使用静态模型(20)的增益K来缩放动态模型(22)的增益k。 被称为双变量的模型(22)的强制动态部分通过增益K和k的比率来缩放。 bi对动态模型的获得有直接的影响(22)。 这通过系数修改块(40)来促进。 此后,将输入到静态模型(20)的新值与先前稳态值之间的差用作动态模型(22)的输入。 然后将预测的动态输出与先前的稳态值相加以提供预测值Y.此外,在稳态值变化之间经过的路径。
    • 15. 发明申请
    • KILN THERMAL AND COMBUSTION CONTROL
    • 灼热和燃烧控制
    • US20060020352A1
    • 2006-01-26
    • US11234927
    • 2005-09-26
    • Gregory MartinEugene BoeStephen PicheJames KeelerDouglas TimmerMark GerulesJohn Havener
    • Gregory MartinEugene BoeStephen PicheJames KeelerDouglas TimmerMark GerulesJohn Havener
    • G05B13/02
    • G05B13/048G05B13/042G05B17/02
    • A method and apparatus for controlling a non-linear mill. A linear controller is provided having a linear gain k that is operable to receive inputs representing measured variables of the plant and predict on an output of the linear controller predicted control values for manipulatible variables that control the plant. A non-linear model of the plant is provided for storing a representation of the plant over a trained region of the operating input space and having a steady-state gain K associated therewith. The gain k of the linear model is adjusted with the gain K of the non-linear model in accordance with a predetermined relationship as the measured variables change the operating region of the input space at which the linear controller is predicting the values for the manipulatible variables. The predicted manipulatible variables are then output after the step of adjusting the gain k.
    • 一种用于控制非线性磨机的方法和装置。 提供具有线性增益k的线性控制器,其可操作以接收表示工厂的测量变量的输入,并且对线控制器的输出预测控制工厂的操纵性变量的预测控制值。 提供工厂的非线性模型,用于在工作输入空间的经过训练的区域上存储工厂的表示,并具有与其相关联的稳态增益K. 线性模型的增益k根据预定的关系用非线性模型的增益K进行调整,因为测量的变量改变了线性控制器预测操作变量的值的输入空间的操作区域 。 然后在调整增益k的步骤之后输出预测的操纵变量。
    • 16. 发明申请
    • METHOD AND APPARATUS FOR MINIMIZING ERROR IN DYNAMIC AND STEADY-STATE PROCESSES FOR PREDICTION, CONTROL, AND OPTIMIZATION
    • 用于最小化用于预测,控制和优化的动态和稳态过程中的错误的方法和装置
    • US20130055021A1
    • 2013-02-28
    • US13608578
    • 2012-09-10
    • Eugene BoeStephen PicheGregory D. Martin
    • Eugene BoeStephen PicheGregory D. Martin
    • G06F11/07
    • G05B13/027G05B13/042G05B13/048G05B17/02G09B23/02
    • A method for providing independent static and dynamic models in a prediction, control and optimization environment utilizes an independent static model (20) and an independent dynamic model (22). The static model (20) is a rigorous predictive model that is trained over a wide range of data, whereas the dynamic model (22) is trained over a narrow range of data. The gain K of the static model (20) is utilized to scale the gain k of the dynamic model (22). The forced dynamic portion of the model (22) referred to as the bi variables are scaled by the ratio of the gains K and k. Thereafter, the difference between the new value input to the static model (20) and the prior steady-state value is utilized as an input to the dynamic model (22). The predicted dynamic output is then summed with the previous steady-state value to provide a predicted value Y.
    • 在预测,控制和优化环境中提供独立的静态和动态模型的方法使用独立的静态模型(20)和独立的动态模型(22)。 静态模型(20)是一种严格的预测模型,可在广泛的数据范围内进行训练,而动态模型(22)则是在窄范围的数据上进行训练。 使用静态模型(20)的增益K来缩放动态模型(22)的增益k。 被称为双变量的模型(22)的强制动态部分通过增益K和k的比率来缩放。 此后,将输入到静态模型(20)的新值与先前稳态值之间的差用作动态模型(22)的输入。 然后将预测的动态输出与先前的稳态值相加以提供预测值Y.
    • 17. 发明授权
    • Method and apparatus for attenuating error in dynamic and steady-state processes for prediction, control, and optimization
    • 用于衰减动态和稳态过程误差的方法和装置,用于预测,控制和优化
    • US07610108B2
    • 2009-10-27
    • US11359295
    • 2006-02-21
    • Eugene BoeStephen PicheGregory D. Martin
    • Eugene BoeStephen PicheGregory D. Martin
    • G05B13/02
    • G05B13/042G05B13/027G05B13/048
    • A method for providing independent static and dynamic models in a prediction, control and optimization environment utilizes an independent static model (20) and an independent dynamic model (22). The static model (20) is a rigorous predictive model that is trained over a wide range of data, whereas the dynamic model (22) is trained over a narrow range of data. The gain K of the static model (20) is utilized to scale the gain k of the dynamic model (22). The forced dynamic portion of the model (22) referred to as the bi variables are scaled by the ratio of the gains K and k. The bi have a direct effect on the gain of a dynamic model (22). This is facilitated by a coefficient modification block (40). Thereafter, the difference between the new value input to the static model (20) and the prior steady-state value is utilized as an input to the dynamic model (22). The predicted dynamic output is then summed with the previous steady-state value to provide a predicted value Y. Additionally, the path that is traversed between steady-state value changes.
    • 在预测,控制和优化环境中提供独立的静态和动态模型的方法使用独立的静态模型(20)和独立的动态模型(22)。 静态模型(20)是一种严格的预测模型,可在广泛的数据范围内进行训练,而动态模型(22)则是在窄范围的数据上进行训练。 使用静态模型(20)的增益K来缩放动态模型(22)的增益k。 被称为双变量的模型(22)的强制动态部分通过增益K和k的比率来缩放。 bi对动态模型的获得有直接的影响(22)。 这通过系数修改块(40)来促进。 此后,将输入到静态模型(20)的新值与先前稳态值之间的差用作动态模型(22)的输入。 然后将预测的动态输出与先前的稳态值相加以提供预测值Y.此外,在稳态值变化之间经过的路径。
    • 18. 发明授权
    • Method and apparatus for approximating gains in dynamic and steady-state processes for prediction, control, and optimization
    • 用于逼近动态和稳态过程中用于预测,控制和优化的增益的方法和装置
    • US07418301B2
    • 2008-08-26
    • US11359114
    • 2006-02-21
    • Eugene BoeStephen PicheGregory D. Martin
    • Eugene BoeStephen PicheGregory D. Martin
    • G05B13/02
    • G05B13/042G05B13/048
    • A method and apparatus for controlling a non-linear mill. A linear controller is provided having a linear gain k that is operable to receive inputs representing measured variables of the plant and predict on an output of the linear controller predicted control values for manipulatible variables that control the plant. A non-linear model of the plant is provided for storing a representation of the plant over a trained region of the operating input space and having a steady-state gain K associated therewith. The gain k of the linear model is adjusted with the gain K of the non-linear model in accordance with a predetermined relationship as the measured variables change the operating region of the input space at which the linear controller is predicting the values for the manipulatible variables. The predicted manipulatible variables are then output after the step of adjusting the gain k.
    • 一种用于控制非线性磨机的方法和装置。 提供具有线性增益k的线性控制器,其可操作以接收表示工厂的测量变量的输入,并且对线性控制器的输出预测用于控制工厂的操纵性变量的预测控制值。 提供工厂的非线性模型,用于在工作输入空间的经过训练的区域上存储工厂的表示,并具有与其相关联的稳态增益K. 线性模型的增益k根据预定的关系用非线性模型的增益K进行调整,因为测量的变量改变了线性控制器预测操作变量的值的输入空间的操作区域 。 然后在调整增益k的步骤之后输出预测的操纵变量。
    • 19. 发明授权
    • Method and apparatus for minimizing error in dynamic and steady-state processes for prediction, control, and optimization
    • 用于最小化用于预测,控制和优化的动态和稳态过程中的误差的方法和装置
    • US09329582B2
    • 2016-05-03
    • US13608578
    • 2012-09-10
    • Eugene BoeStephen PicheGregory D. Martin
    • Eugene BoeStephen PicheGregory D. Martin
    • G05B9/02G05B13/02G05B13/04G05B17/02
    • G05B13/027G05B13/042G05B13/048G05B17/02G09B23/02
    • A method for providing independent static and dynamic models in a prediction, control and optimization environment utilizes an independent static model (20) and an independent dynamic model (22). The static model (20) is a rigorous predictive model that is trained over a wide range of data, whereas the dynamic model (22) is trained over a narrow range of data. The gain K of the static model (20) is utilized to scale the gain k of the dynamic model (22). The forced dynamic portion of the model (22) referred to as the bi variables are scaled by the ratio of the gains K and k. Thereafter, the difference between the new value input to the static model (20) and the prior steady-state value is utilized as an input to the dynamic model (22). The predicted dynamic output is then summed with the previous steady-state value to provide a predicted value Y.
    • 在预测,控制和优化环境中提供独立的静态和动态模型的方法使用独立的静态模型(20)和独立的动态模型(22)。 静态模型(20)是一种严格的预测模型,可在广泛的数据范围内进行训练,而动态模型(22)则是在窄范围的数据上进行训练。 使用静态模型(20)的增益K来缩放动态模型(22)的增益k。 被称为双变量的模型(22)的强制动态部分通过增益K和k的比率来缩放。 此后,将输入到静态模型(20)的新值与先前稳态值之间的差用作动态模型(22)的输入。 然后将预测的动态输出与先前的稳态值相加以提供预测值Y.
    • 20. 发明授权
    • Method and apparatus for minimizing error in dynamic and steady-state processes for prediction, control, and optimization
    • 用于最小化用于预测,控制和优化的动态和稳态过程中的误差的方法和装置
    • US08311673B2
    • 2012-11-13
    • US11359296
    • 2006-02-21
    • Eugene BoeStephen PicheGregory D. Martin
    • Eugene BoeStephen PicheGregory D. Martin
    • G05B19/04G06F19/00
    • G05B13/027G05B13/042G05B13/048G05B17/02G09B23/02
    • A method for providing independent static and dynamic models in a prediction, control and optimization environment utilizes an independent static model (20) and an independent dynamic model (22). The static model (20) is a rigorous predictive model that is trained over a wide range of data, whereas the dynamic model (22) is trained over a narrow range of data. The gain K of the static model (20) is utilized to scale the gain k of the dynamic model (22). The forced dynamic portion of the model (22) referred to as the bi variables are scaled by the ratio of the gains K and k. Thereafter, the difference between the new value input to the static model (20) and the prior steady-state value is utilized as an input to the dynamic model (22). The predicted dynamic output is then summed with the previous steady-state value to provide a predicted value Y.
    • 在预测,控制和优化环境中提供独立的静态和动态模型的方法使用独立的静态模型(20)和独立的动态模型(22)。 静态模型(20)是一种严格的预测模型,可在广泛的数据范围内进行训练,而动态模型(22)则是在窄范围的数据上进行训练。 使用静态模型(20)的增益K来缩放动态模型(22)的增益k。 被称为双变量的模型(22)的强制动态部分通过增益K和k的比率来缩放。 此后,将输入到静态模型(20)的新值与先前稳态值之间的差用作动态模型(22)的输入。 然后将预测的动态输出与先前的稳态值相加以提供预测值Y.