会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 11. 发明授权
    • Viewing apparatus with a counterbalanced and articulated mirror
    • 具有平衡和关节镜的观察装置
    • US5815302A
    • 1998-09-29
    • US540736
    • 1995-10-11
    • Ray E. Mc VeyYeong-Wei A. WuJohn J. Anagnost
    • Ray E. Mc VeyYeong-Wei A. WuJohn J. Anagnost
    • B60R1/00B60R1/02B63G8/38G02B7/182G02B7/198G02B23/08G09F9/30G09F9/313H01J17/49G02B26/08
    • G09F9/313B60R1/025H01J17/492
    • An articulated viewing apparatus (10) has a pair of elevational actuators (56, 78), one of which is a coarse-position actuator (56) and the other of which is a fine-position actuator (78), and each of which pivots a mirror head (28) about respective parallel elevational axes (54, 66'). Pivotal movements of the mirror head (28) direct the line of sight of a viewer looking outwardly through a window (22). The window (22) may be formed in the wall of a vehicle or may be at the upper end of a periscope tube, for example, and includes a transparent material (24). This window (22) may admit light to an optical sensor or to the user's eye directly. The coarse-position elevational actuator (56) is positioned so that its axis (54) is located as close as possible to an edge of the mirror head (28) and close to the inner surface of the window glazing (24) so that the size of the window (22) is minimized with respect to the size of the optical aperture and field of view provided to the user of the apparatus (10). The fine-position actuator (78) is attached to the mirror head (28) at a respective axis (66') approximately at the geometric center of the mirror (28), so that the mirror (28) is statically balanced about the fine-position elevation axis (66') of this actuator (78).
    • 铰接式观察装置(10)具有一对正面致动器(56,78),其中一个是粗略位置致动器(56),另一个是精细位置致动器(78),其中每个 围绕相应的平行的纵轴(54,66')枢转反射镜头(28)。 镜头(28)的枢转运动引导观看者通过窗口(22)向外看的视线。 窗口(22)可以形成在车辆的壁中,或者可以在例如潜望镜管的上端,并且包括透明材料(24)。 该窗口(22)可以直接向光学传感器或用户的眼睛接收光。 粗位置升降致动器(56)被定位成使得其轴线(54)尽可能靠近镜头(28)的边缘并且靠近窗玻璃(24)的内表面定位,使得 相对于提供给设备(10)的用户的光学孔径和视野的尺寸,窗口(22)的尺寸被最小化。 精细位置致动器(78)在大致在反射镜(28)的几何中心处的相应轴线(66')处附接到镜头(28),使得反射镜(28)围绕精细 该致动器(78)的位置仰角轴(66')。
    • 12. 发明授权
    • Method and system for laser based communication
    • 基于激光的通信方法与系统
    • US08213803B2
    • 2012-07-03
    • US12128857
    • 2008-05-29
    • Yeong-wei A. WuKetao Liu
    • Yeong-wei A. WuKetao Liu
    • H04B10/00
    • H04B10/118
    • Method and system for determining a point-ahead angle from a first spacecraft to a second spacecraft, each spacecraft having a laser communication (“lasercom”) terminal is provided If ephemeris data regarding the second spacecraft is unavailable to the first spacecraft while the second spacecraft is mobile, (a) obtaining attitude information regarding the first spacecraft; and (b) obtaining gimbal offload commands from a fast steering mirror and a first spacecraft telescope subsystem of the first spacecraft; wherein a point-ahead determination module receives the attitude information and the gimbal offload commands; and determining an estimate of the point-ahead angle from the first spacecraft to the second spacecraft based on the attitude information and the gimbal offload commands.
    • 用于确定从第一航天器到第二航天器的点前进角度的方法和系统,提供具有激光通信(“激光通信”)终端的每个航天器如果关于第二航天器的星历数据对于第一航天器是不可用的,而第二航天器 是移动的,(a)获得关于第一航天器的态度信息; 和(b)从第一航天器的快速转向镜和第一航天器望远镜子系统获得万向节卸载命令; 其中,提前确定模块接收姿态信息和万向节卸载命令; 以及基于姿态信息和万向节卸载命令确定从第一航天器到第二航天器的点前进角度的估计。
    • 13. 发明授权
    • Multiple stayout zones for ground-based bright object exclusion
    • 基于地面明亮物体排除的多个停留区域
    • US07228231B2
    • 2007-06-05
    • US10709348
    • 2004-04-29
    • David D. NeedelmanRichard A. FowellPeter C. LaiYeong-Wei A. WuRongsheng Li
    • David D. NeedelmanRichard A. FowellPeter C. LaiYeong-Wei A. WuRongsheng Li
    • G01C21/00B64G1/10
    • G01C3/08B64G1/361G01C22/00
    • A vehicle (12) including a control system (18) is used for controlling vehicle attitude or angular velocity (38). The processor (24) is coupled to a star sensor or tracker (22) and a memory (30) that may include a star catalog (32), and an exclusion list (36). The exclusion list (36), a list of stars to be temporarily excluded from consideration when determining attitude or angular velocity or relative alignment of star sensors or trackers, is calculated on board. Such a calculation prevents the necessity for a costly, periodic, ground calculation and upload of such data. By manipulating the star catalog, or sub-catalogs derived from said catalog, based upon the exclusion list (36), measurements of such excluded stars are prevented from corrupting the attitude or angular velocity or alignment estimates formulated on board. The system uses multiple stayout zones for excluding stars from the exclusion list. A central exclusion zone excludes all stars while a second or more exclusion zones allow some stars to be used in the attitude determination
    • 包括控制系统(18)的车辆(12)用于控制车辆姿态或角速度(38)。 处理器(24)耦合到星形传感器或跟踪器(22)和可包括星形目录(32)的存储器(30)和排除列表(36)。 排除列表(36)在船上计算确定姿态或角速度或星形传感器或跟踪器的相对对齐时暂时排除考虑的星星列表。 这样的计算可以防止对这些数据进行昂贵,周期性,地面计算和上传的必要性。 通过根据排除列表(36)操纵从所述目录导出的星号目录或子目录,防止这些排除的星星的测量破坏了在船上制定的姿态或角速度或对准估计。 系统使用多个停留区域来排除排除列表中的星星。 中央排除区不包括所有星星,而第二个或更多个禁区可允许在姿态确定中使用一些恒星
    • 14. 发明授权
    • Attitude-acquisition methods and systems for controlled spacecraft attitude
    • 受控航天器态度的姿态采集方法和系统
    • US06766227B2
    • 2004-07-20
    • US10300454
    • 2002-11-19
    • David D. NeedelmanYeong-Wei A. WuRongsheng Li
    • David D. NeedelmanYeong-Wei A. WuRongsheng Li
    • G05D100
    • G01C21/025B64G1/26B64G1/285B64G1/288B64G1/361G05D1/0883
    • Attitude acquisition methods and systems are provided which reduce the time generally required to acquire spacecraft attitude estimates and enhance the probability of realizing such estimates. The methods and systems receive, over a time span &Dgr;t, successive frames of star-sensor signals that correspond to successive stellar fields-of-view, estimate spacecraft rotation &Dgr;r throughout at least a portion of the time span &Dgr;t, and, in response to the spacecraft rotation &Dgr;r, process the star-sensor signals into a processed set of star-sensor signals that denote star positions across an expanded field-of-view that exceeds any of the successive fields-of-view. The expanded field-of-view facilitates identification of the stars that generated the processed set of star-sensor signals to thereby acquire an initial attitude estimate.
    • 提供了姿态获取方法和系统,减少了获取航天器态度估计所需的时间,并提高了实现此类估计的可能性。 方法和系统在时间跨度Deltat中接收对应于连续的恒星视场的星形传感器信号的连续帧,在至少一部分时间段Deltat中估计航天器旋转Deltar,并响应于 航天器旋转Deltar,将星形传感器信号处理成一组经过处理的恒星传感器信号,它们表示超过任何连续视场的扩展视场中的星形位置。 扩展的视野有助于识别产生经处理的星形传感器信号集合的恒星,从而获得初始姿态估计。
    • 15. 发明授权
    • Star detection and location system
    • 星型检测和定位系统
    • US06478260B1
    • 2002-11-12
    • US09507099
    • 2000-02-17
    • Christopher L. RiceYeong-Wei A. Wu
    • Christopher L. RiceYeong-Wei A. Wu
    • B64G136
    • G01C21/025B64G1/361G01S3/781G01S3/7867G01S5/0247
    • An apparatus for determining star location includes a star tracker, a star catalog and a controller. The star tracker is used to sense the positions of stars and generate signals corresponding to the positions of the stars as seen in its field of view. The star catalog contains star location data that is stored using a primary and multiple secondary arrays sorted by both declination (DEC) and right ascension (RA), respectively. The controller checks the star catalog and determines which stars to track. The controller does this determination by using an algorithm to sort the primary and secondary arrays to determine which stars are located in the star tracker field of view. The controller then commands the star tracker to track these stars and uses them to determine the spacecraft attitude.
    • 用于确定星形位置的装置包括星形跟踪器,星形目录和控制器。 星形跟踪器用于感测恒星的位置,并产生与其视场中所见的恒星位置相对应的信号。 星型目录包含使用分别由偏角(DEC)和右升高(RA)排序的主要和多个辅助阵列存储的星形位置数据。 控制器检查星型目录并确定要跟踪哪些恒星。 控制器通过使用算法对主阵列和辅助阵列进行排序来确定哪些恒星位于星型跟踪器视野中来执行此确定。 然后,控制器命令星形跟踪器跟踪这些恒星并使用它们来确定航天器的姿态。
    • 17. 发明授权
    • FLIR boresight alignment
    • FLIR视轴对齐
    • US5672872A
    • 1997-09-30
    • US618646
    • 1996-03-19
    • Yeong-Wei A. WuDavid F. HartmanMark Youhanaie
    • Yeong-Wei A. WuDavid F. HartmanMark Youhanaie
    • F41G3/32F41G1/54
    • F41G3/326
    • A FLIR boresight alignment system (52) for aligning a sensor pod LOS associated with a weapons pod of a fighter aircraft to a navigation reference frame. A pod inertial navigation and global positioning system (62) provides position, velocity and attitude of a sensor (58) within the pod. An aircraft inertial navigation and/or global positioning system (68) provides position, velocity and attitude of the aircraft. The sensor position and velocity and the aircraft position and velocity are applied to a transfer alignment filter (64) that utilizes Kalman filtering. An output of the transfer alignment filter (64) is applied to a sensor inertial navigation system to correct the pod LOS relative to the navigation reference frame. Alternately, the transfer alignment filter (64) may operate directly upon the pseudo ranges and delta pseudo ranges to satellites being tracked by the GPS receiver.
    • 用于将与战斗机的武器舱相关联的传感器舱LOS与导航参考系对准的FLIR视轴对准系统(52)。 舱体惯性导航和全球定位系统(62)提供舱内传感器(58)的位置,速度和姿态。 飞机惯性导航和/或全球定位系统(68)提供飞机的位置,速度和姿态。 传感器位置和速度以及飞行器位置和速度被应用于利用卡尔曼滤波的传送对准滤波器(64)。 转移对准过滤器(64)的输出被施加到传感器惯性导航系统以相对于导航参考系来校正盒LOS。 或者,传输对准滤波器(64)可以直接对由GPS接收机跟踪的卫星的伪距离和差值伪距进行操作。
    • 18. 发明授权
    • Cyrogenic cooling system with active vibration control
    • 具有主动振动控制的发热冷却系统
    • US5412951A
    • 1995-05-09
    • US179636
    • 1993-12-22
    • Yeong-Wei A. Wu
    • Yeong-Wei A. Wu
    • F16F15/00F16F15/02F25B9/14G05D19/02F25B9/00
    • F16F15/002F25B9/14G05D19/02F25B2309/001F25B2500/13
    • A cryogenic cooling system having a mechanism for canceling vibration at a fundamental frequency and at harmonics thereof. The inventive system includes a first apparatus (28, 32) for cooling a mass. The first apparatus (28, 32) creates a vibration at a first frequency and a second frequency. In a typical application, the first frequency is a fundamental frequency and the second frequency is a harmonic of the first frequency. Often several harmonics are present. The invention includes a second apparatus (30, 34) for substantially eliminating vibration at the first frequency and a third apparatus (48, 50) for substantially eliminating vibration at the second frequency. The second apparatus includes a mass (30) and a motor (34) for driving same. The mass (30) is disposed to counter the vibration created by the first apparatus when the motor (34) is driven by a first current. The third apparatus includes a sensor (48) for detecting the vibration at the second frequency and providing an output in response to a sensed force F resulting therefrom. The third apparatus further includes a feedback circuit (50) for providing a second current for driving the motor. The second current is the sum of the first current and a feedback current I.sub.b2. The feedback current I.sub.b2 is equal to -G.sub.f (s)F, where -G.sub.f (s) is a feedback transfer function. The feedback transfer function is a product of a first transfer function H.sub.I (s) representing dynamics of the second apparatus required to cancel the vibration at the first frequency and a second transfer function G.sub.D (s) representing the dynamics of the second means required to cancel the harmonic vibration.
    • 一种低温冷却系统,具有用于消除基频和谐波振动的机构。 本发明的系统包括用于冷却质量的第一装置(28,32)。 第一装置(28,32)以第一频率和第二频率产生振动。 在典型应用中,第一频率是基频,第二频率是第一频率的谐波。 通常有几个谐波存在。 本发明包括用于基本上消除第一频率振动的第二装置(30,34)和用于基本消除第二频率振动的第三装置(48,50)。 第二装置包括用于驱动它的质量块(30)和马达(34)。 当电动机(34)被第一电流驱动时,质量块(30)设置成抵消由第一装置产生的振动。 第三装置包括用于检测第二频率的振动的传感器(48),并响应于由此产生的感测力F而提供输出。 第三装置还包括用于提供驱动马达的第二电流的反馈电路(50)。 第二电流是第一电流和反馈电流Ib2的和。 反馈电流Ib2等于-Gf(s)F,其中-Gf(s)是反馈传递函数。 反馈传递函数是代表消除第一频率振动所需的第二装置的动态特性的第一传递函数HI(s)的乘积和代表取消所需的第二装置的动力学的第二传递函数GD 谐波振动。
    • 19. 发明授权
    • Method for compensating star motion induced error in a stellar inertial attitude determination system
    • 用于补偿恒星惯性姿态测定系统中星星运动误差的方法
    • US07487016B2
    • 2009-02-03
    • US11221646
    • 2005-09-07
    • Richard A. FowellRongsheng LiYeong-Wei A. Wu
    • Richard A. FowellRongsheng LiYeong-Wei A. Wu
    • B64G1/24
    • B64G1/36G05D1/0883
    • A method for controlling an actuator of a vehicle comprises providing a dynamic condition sensor generating a vehicle movement signal and a position sensor for generating a reported position. A processor is coupled to the inertial sensor and the position sensor and comprises an estimator, a position measurement predictor having a filter, a comparator and a control shaping block, said estimator generating a vehicle position based upon the dynamic condition sensor, said position measurement predictor generating an estimated position measurement in response to the reported vehicle position and a matched frequency response to the movement signal, said control shaping block generating an actuator control signal in response to a comparison of the estimated position measurement and the reported vehicle position.
    • 一种用于控制车辆的致动器的方法包括提供产生车辆运动信号的动态条件传感器和用于产生报告位置的位置传感器。 处理器耦合到惯性传感器和位置传感器,并且包括估计器,具有滤波器的位置测量预测器,比较器和控制整形块,所述估计器基于动态条件传感器产生车辆位置,所述位置测量预测器 响应于所报告的车辆位置和对所述移动信号的匹配的频率响应来产生估计位置测量,所述控制整形块响应于所估计的位置测量和报告的车辆位置的比较而产生致动器控制信号。
    • 20. 发明授权
    • Time-of-day tracking with INS input
    • 时间跟踪INS输入
    • US07260026B1
    • 2007-08-21
    • US11556812
    • 2006-11-06
    • Yeong-wei A. Wu
    • Yeong-wei A. Wu
    • G04C11/02G01S5/02G01C21/00
    • G01C21/16G04R20/02G04R40/06
    • Time-of-day tracking with INS input is described. In one embodiment, a range rate and a range acceleration is generated from inertial navigation system data received from a moveable platform (e.g. an airborne platform). A time and frequency estimation filter receives the range rate, the range acceleration and a timing-based error signal from a time discriminator, and can then generate a time-of-day correction signal and a frequency correction signal. A time-of-day generator receives the time-of-day correction signal and generates a time-of-day correction, and a clock frequency generator receives the frequency correction signal and generates a frequency correction. The time discriminator receives a satellite synchronization signal from a satellite, the time-of-day correction from the time-of-day generator, and the frequency correction from the clock frequency generator. The time discriminator initially generates the timing-based error signal from the satellite synchronization signal, and subsequently generates the timing-based error signal from the time-of-day correction and the frequency correction to synchronize the satellite with the moveable platform.
    • 描述了INS输入的时间跟踪。 在一个实施例中,从从可移动平台(例如机载平台)接收的惯性导航系统数据产生范围速率和范围加速度。 时间和频率估计滤波器从时间鉴别器接收范围速率,范围加速度和基于定时的误差信号,并且然后可以产生日时校正信号和频率校正信号。 时间发生器接收时间校正信号并产生日时校正,时钟频率发生器接收频率校正信号并产生频率校正。 时间鉴别器从卫星接收卫星同步信号,从日时钟发生器接收时间校正以及来自时钟频率发生器的频率校正。 时间鉴别器最初从卫星同步信号产生基于定时的误差信号,随后从日时校正和频率校正产生基于时序的误差信号,以使卫星与可移动平台同步。