会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 11. 发明授权
    • Method and device for tracking weak global navigation satellite system (GNSS) signals
    • 用于跟踪弱全球导航卫星系统(GNSS)信号的方法和装置
    • US07639181B2
    • 2009-12-29
    • US11618131
    • 2006-12-29
    • Chun WangShaowei Han
    • Chun WangShaowei Han
    • H01S1/00
    • G01S19/24G01S19/29G01S19/37
    • A Global Navigation Satellite System (GNSS) receiver and associated method capable of tracking weak GNSS signals from a plurality of GNSS satellites. In a preferred embodiment, code and carrier tracking loops are initially closed around the code phase, carrier frequency, and data bit edge estimates handed over from an acquisition mode. In subsequent tracking, early, prompt, and late copies of the code replica are correlated with the incoming signal. The prompt correlations are coherently integrated over an extended updating interval for data bit edge and sign estimation as well as for carrier phase and frequency error discrimination whereas the early and late correlations are used for code error discrimination. Code delay and carrier phase and frequency errors are used to update the code and carrier tracking loop filters. Together with data bits, they form observables of a GNSS signal's time and frequency parameters for timing and position fixing.
    • 一种能够跟踪来自多个GNSS卫星的弱GNSS信号的全球导航卫星系统(GNSS)接收机和相关方法。 在优选实施例中,代码和载波跟踪循环首先围绕从采集模式切换的码相位,载波频率和数据比特边缘估计值闭合。 在随后的跟踪中,代码副本的早期,及时和晚期副本与输入信号相关。 对于数据位边沿和符号估计以及载波相位和频率误差鉴别的延迟更新间隔,快速相关被相干地集成,而早期和晚期相关用于码错误鉴别。 代码延迟和载波相位和频率误差用于更新代码和载波跟踪环路滤波器。 与数据位一起,它们形成GNSS信号的时间和频率参数的观测值,用于定时和位置固定。
    • 12. 发明申请
    • POSITION AND TIME DETERMINATION UNDER WEAK SIGNAL CONDITIONS
    • 在弱信号条件下的位置和时间确定
    • US20090002226A1
    • 2009-01-01
    • US11771845
    • 2007-06-29
    • Jun MoShaowei Han
    • Jun MoShaowei Han
    • G01S1/00
    • G01S19/24G01S19/42
    • Described herein are systems and methods that are capable of determining receiver position and system time under weak signal conditions. When the receiver is unable to accurately determine the satellite signal travel time, e.g., due to weak signal reception or some other condition, the receiver can still estimate the pseudo-range for the satellite based on an initial receiver position and system time. In this case, the system and methods described herein provide the necessary initial receiver position and system time with enough accuracy to estimate the pseudo-range, even under weak signal conditions. The receiver can then use the estimated pseudo-range to determine a more accurate receiver position.
    • 这里描述的是能够在弱信号条件下确定接收机位置和系统时间的系统和方法。 当接收机不能准确地确定卫星信号传播时间时,例如由于信号接收弱或某种其他条件,接收机仍然可以基于初始的接收机位置和系统时间来估计卫星的伪距离。 在这种情况下,即使在弱信号条件下,本文所述的系统和方法也提供了足够准确的必要的初始接收机位置和系统时间来估计伪距离。 然后,接收机可以使用估计的伪距来确定更准确的接收机位置。
    • 13. 发明申请
    • METHOD AND APPARATUS FOR NAVIGATION DATA DOWNLOADS FROM WEAK SIGNALS
    • 导航数据下载从弱信号的方法和装置
    • US20080111736A1
    • 2008-05-15
    • US11558611
    • 2006-11-10
    • Shaowei Han
    • Shaowei Han
    • H04B7/185G01S5/14
    • G01S19/252
    • The present invention provides systems and methods that enable a standalone receiver capable of downloading navigation data under weak signal conditions. In an embodiment, a standalone navigation receiver generates predicted satellite orbits based on the tracking history of the satellites stored in the receiver. The tracking history comprises historical navigation data previously received from the satellites. The receiver uses the predicted satellite orbit to generate navigation data such as ephemeris and almanac. Since the predicted satellite is accurate, the generated navigation data is similar to the navigation data transmitted by the navigation satellites, and can therefore be used by the receiver to correct the downloaded navigation data bits. Thus many of the bits of a downloaded navigation word, especially the higher order significant bits of the word can be corrected. The remaining bit errors can be resolved based on a parity check of the word.
    • 本发明提供了能够在弱信号条件下能够下载导航数据的独立接收机的系统和方法。 在一个实施例中,独立导航接收机基于存储在接收机中的卫星的跟踪历史来生成预测的卫星轨道。 跟踪历史包括先前从卫星接收的历史导航数据。 接收机使用预测的卫星轨道来生成导航数据,如星历和年历。 由于预测的卫星是准确的,因此所生成的导航数据与由导航卫星发送的导航数据相似,因此可由接收机使用以校正下载的导航数据比特。 因此,可以校正下载的导航字的许多位,特别是该字的高阶有效位。 可以基于字的奇偶校验来解决剩余的位错误。
    • 14. 发明授权
    • Enhanced real time kinematics determination method and apparatus
    • 增强型实时运动学测定方法及装置
    • US07148843B2
    • 2006-12-12
    • US10610541
    • 2003-07-02
    • Shaowei HanKevin Xinhua Chin
    • Shaowei HanKevin Xinhua Chin
    • G01S5/14
    • G01S19/44
    • A method of and computer-readable medium containing instructions for high accuracy, reliable position determination. A high precision GPS-RTK system using the present novel techniques is initialized instantaneously or near instantaneously. To improve the computational efficiency and to improve the reliability of the procedure, advances in data functional and stochastic modeling, validation criteria, adaptation and system design were achieved. A position estimate using an integrated method is determined. Ambiguity resolution of the position estimate is enhanced by applying a quality control procedure using derived validation criteria. A second position estimate based on the enhanced ambiguity resolution is derived.
    • 包含用于高精度,可靠位置确定的指令的方法和计算机可读介质。 使用本新技术的高精度GPS-RTK系统被瞬时或接近地初始化。 为了提高计算效率和提高程序的可靠性,实现了数据功能和随机建模,验证标准,适应和系统设计的进步。 确定使用积分方法的位置估计。 通过使用衍生的验证标准应用质量控制程序来增强位置估计的模糊度解析。 导出基于增强的模糊度分辨率的第二位置估计。
    • 15. 发明申请
    • Method and apparatus for self-calibration and adaptive temperature compensation in GPS receivers
    • GPS接收机中自校准和自适应温度补偿的方法和装置
    • US20060267703A1
    • 2006-11-30
    • US11140492
    • 2005-05-26
    • Chi-Shin WangKudrethaya ShridharaJun MoShaowei HanHansheng Wang
    • Chi-Shin WangKudrethaya ShridharaJun MoShaowei HanHansheng Wang
    • H03L1/00
    • H03L1/026G01S19/235
    • The invention provides a method and apparatus to optimally estimate and adaptively compensate the temperature-induced frequency drift of a crystal oscillator in a navigational signal receiver. A Read-Write memory encodes two tables, one for looking up frequency drift values versus temperature readings and another one for valid data confirmation on the first table. The initially empty look-up table is gradually populated with frequency drift values while the receiver computes the frequency drift along with its position. During initial start of the receiver or re-acquisition of satellite signals, the stored frequency drift value corresponding to the current temperature is used. If no valid frequency drift value is available, the frequency drift value is computed based on the existing frequency drift values in the table. This invention reduces the Time-To-First-Fix (TTFF) of the receiver and enables the receiver to self-calibrate, thus no additional factory calibration would be necessary.
    • 本发明提供了一种方法和装置,用于对导航信号接收机中的晶体振荡器的温度感应频率漂移进行最佳估计和自适应补偿。 读写存储器编码两个表,一个用于查找频率漂移值与温度读数,另一个用于在第一个表上进行有效数据确认。 初始空的查找表逐渐填充频率漂移值,而接收器计算频率漂移及其位置。 在接收机初始启动或重新采集卫星信号时,使用与当前温度对应的存储频率漂移值。 如果没有有效的频率漂移值可用,则基于表中现有的频率漂移值来计算频率漂移值。 本发明减少了接收机的首次定时(TTFF),使得接收机能够自校准,因此不需要额外的工厂校准。
    • 16. 发明申请
    • System and method for fast initialization of navigational satellite signal receivers
    • 导航卫星信号接收机快速初始化的系统和方法
    • US20060250304A1
    • 2006-11-09
    • US11124413
    • 2005-05-06
    • Jun MoHansheng WangChi-Shin WangShaowei HanKudrethaya Shridhara
    • Jun MoHansheng WangChi-Shin WangShaowei HanKudrethaya Shridhara
    • G01S5/14
    • G01S19/28
    • The present invention provides a method and apparatus for a satellite navigation receiver to lock onto satellite signals in the cold start mode with no information on the receiver position, the satellite position, or time estimates stored in the receiver's memory. All satellites in a positioning system are divided into groups based on the satellite constellation structure. In an embodiment, the positioning system is the Global Positioning System (GPS) and all GPS satellites are divided into three groups. During initialization of the receiver, the satellites are searched per group to lock onto at least one satellite signal. Other satellites are then searched in a given order based on their respective distance or proximity to the first satellite acquired. This method reduces the Time-to-First-Fix (TTFF) ordinarily required by conventional receivers in the cold start mode.
    • 本发明提供了一种用于卫星导航接收机在冷启动模式下锁定卫星信号的方法和装置,其中没有关于存储在接收机的存储器中的接收机位置,卫星位置或时间估计的信息。 基于卫星星座结构将定位系统中的所有卫星分成几组。 在一个实施例中,定位系统是全球定位系统(GPS),所有GPS卫星分为三组。 在接收机的初始化期间,每组搜索卫星以锁定至少一个卫星信号。 然后根据其相应的距离或与所获取的第一卫星的距离,以给定的顺序搜索其他卫星。 这种方法减少了常规接收机在冷启动模式下通常要求的首次固定时间(TTFF)。
    • 17. 发明申请
    • Enhanced real time kinematics determination method and apparatus
    • 增强型实时运动学测定方法及装置
    • US20050001762A1
    • 2005-01-06
    • US10610541
    • 2003-07-02
    • Shaowei HanKevin Chin
    • Shaowei HanKevin Chin
    • G01S19/21G01S5/14G01S19/26
    • G01S19/44
    • A method of and computer-readable medium containing instructions for high accuracy, reliable position determination. A high precision GPS-RTK system using the present novel techniques is initialized instantaneously or near instantaneously. To improve the computational efficiency and to improve the reliability of the procedure, advances in data functional and stochastic modeling, validation criteria, adaptation and system design were achieved. A position estimate using an integrated method is determined. Ambiguity resolution of the position estinate is enhanced by applying a quality control procedure using derived validation criteria. A second position estimate based on the enhanced ambiguity resolution is derived.
    • 包含用于高精度,可靠位置确定的指令的方法和计算机可读介质。 使用本新技术的高精度GPS-RTK系统被瞬时或接近地初始化。 为了提高计算效率和提高程序的可靠性,实现了数据功能和随机建模,验证标准,适应和系统设计的进步。 确定使用积分方法的位置估计。 通过使用衍生的验证标准应用质量控制程序来增强位置估计的模糊度分辨率。 导出基于增强的模糊度分辨率的第二位置估计。
    • 19. 发明授权
    • Method and apparatus in standalone positioning without broadcast ephemeris
    • 独立定位无广播星历的方法和装置
    • US07564406B2
    • 2009-07-21
    • US11558614
    • 2006-11-10
    • Shaowei Han
    • Shaowei Han
    • G01S1/00
    • G01S19/27
    • The present invention provides methods and system for enabling a standalone navigation receiver capable of generating receiver specific predicted satellite orbits based on historical navigation data collected by and stored in the receiver. Thus, the navigation receiver is able to use the predicted satellite orbits to obtain better Time-To-First-Fix (TTFF) and position accuracy without the need of connecting to a remote server and the associated communications system. In an embodiment, a standalone navigation receiver having sufficient memory collects navigation data from navigation satellites and generates predicted satellite orbits using the collected navigation data. Under weak signal conditions when decoding of the navigation data is not possible, the receiver uses the predicted satellite orbits to predict the accurate satellite positions or the set of ephemeris and the associated pseudoranges. The predicted orbits may be accurate for several days without the reception of broadcast ephemeris.
    • 本发明提供了能够基于由接收机收集和存储的历史导航数据产生能够产生接收机专用预测卫星轨道的独立导航接收机的方法和系统。 因此,导航接收机能够使用预测的卫星轨道来获得更好的时间优先(TTFF)和位置精度,而不需要连接到远程服务器和相关联的通信系统。 在一个实施例中,具有足够存储器的独立导航接收器从导航卫星收集导航数据并使用所收集的导航数据产生预测的卫星轨道。 在导航数据解码不可能的弱信号条件下,接收机使用预测的卫星轨道来预测精确的卫星位置或星历集和相关联的伪距。 预测的轨道可能准确几天而没有接收广播星历。
    • 20. 发明申请
    • NAVIGATIONAL POSITIONING WITHOUT TIMING INFORMATION
    • 导航定位无时间信息
    • US20080303713A1
    • 2008-12-11
    • US11759769
    • 2007-06-07
    • Shaowei Han
    • Shaowei Han
    • G01S5/14
    • G01S19/256G01S19/45
    • Provided herein are systems and methods that enable a navigation receiver to determine receiver position using a low ppm (Parts Per Million) Real Time Clock (RTC) under weak satellite signal reception conditions without the need for timing information from navigation satellites or aiding systems. Under weak signal conditions, the receiver is unable to demodulate navigation data bits but may be able to synchronize with the one ms PN sequences and 20 ms data bit edges of a received signal. In this case, the receiver is unable to determine the signal travel time from the navigation data bits resulting in one ms and/or 20 ms integer ambiguities in the travel time. Systems and methods are provided for resolving these one ms and/or 20 ms integer ambiguities and correct or reconstruct the pseudorange measurements accordingly. The reconstructed pseudorange measurements are used to accurately determine the receiver position.
    • 本文提供的系统和方法使得导航接收机能够在弱卫星信号接收条件下使用低ppm(百万分之几)实时时钟(RTC)来确定接收机位置,而不需要来自导航卫星或辅助系统的定时信息。 在弱信号条件下,接收机不能解调导航数据位,但是可能能够与接收到的信号的1ms PN序列和20ms数据比特边沿同步。 在这种情况下,接收机不能从导航数据位确定信号行进时间,导致行进时间中的一毫秒和/或20毫秒的整数模糊度。 提供了用于解决这些1ms和/或20ms整数模糊度的系统和方法,并相应地校正或重构伪距测量。 重建的伪距测量用于准确地确定接收机的位置。