会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 161. 发明授权
    • Structure and method to optimize strain in CMOSFETs
    • 优化CMOSFET应变的结构和方法
    • US07432553B2
    • 2008-10-07
    • US10905745
    • 2005-01-19
    • Xiangdong ChenHaining S. Yang
    • Xiangdong ChenHaining S. Yang
    • H01L27/01H01L27/12H01L31/0392H01L29/76H01L29/94H01L31/062H01L31/113H01L31/119
    • H01L29/7843H01L21/823807H01L21/823842H01L2924/0002H01L2924/00
    • A semiconductor structure of strained MOSFETs, comprising both PMOSFETs and NMOSFETS, and a method for fabricating strained MOSFETs are disclosed that optimize strain in the MOSFETs, and more particularly maximize the strain in one kind (P or N) of MOSFET and minimize and relax the strain in another kind (N or P) of MOSFET. A strain inducing CA nitride coating having an original full thickness is formed over both the PMOSFETs and the NMOSFETs, wherein the strain inducing coating produces an optimized full strain in one kind of semiconductor device and degrades the performance of the other kind of semiconductor device. The strain inducing CA nitride coating is etched to a reduced thickness over the other kind of semiconductor devices, wherein the reduced thickness of the strain inducing coating relaxes and produces less strain in the other MOSFETs.
    • 公开了包括PMOSFET和NMOSFETS的应变MOSFET的半导体结构以及制造应变MOSFET的方法,其优化MOSFET中的应变,并且更特别地使MOSFET的一种(P或N)中的应变最大化并且使 另一种(N或P)MOSFET的应变。 在PMOSFET和NMOSFET两者上形成具有原始全厚度的应变诱导性氮化碳氮化物涂层,其中应变诱导涂层在一种半导体器件中产生优化的全应变,并降低其他种类的半导体器件的性能。 诱导氮化钛涂层的应变被蚀刻到比另一种半导体器件更薄的厚度,其中应变诱导涂层的减小的厚度在其它MOSFET中松弛并产生较小的应变。
    • 162. 发明申请
    • OVERLAPPED STRESSED LINERS FOR IMPROVED CONTACTS
    • 用于改进联系人的超重压力衬管
    • US20080237737A1
    • 2008-10-02
    • US11693254
    • 2007-03-29
    • Xiangdong ChenJun Jung KimYoung Gun KoJae-Eun ParkHaining S. Yang
    • Xiangdong ChenJun Jung KimYoung Gun KoJae-Eun ParkHaining S. Yang
    • H01L29/76H01L21/8238
    • H01L21/0217H01L21/02274H01L21/3185H01L21/823807H01L29/7843
    • A semiconductor structure is provided which includes a first semiconductor device in a first active semiconductor region and a second semiconductor device in a second active semiconductor region. A first dielectric liner overlies the first semiconductor device and a second dielectric liner overlies the second semiconductor device, with the second dielectric liner overlapping the first dielectric liner at an overlap region. The second dielectric liner has a first portion having a first thickness contacting an apex of the second gate conductor and a second portion extending from peripheral edges of the second gate conductor which has a second thickness substantially greater than the first thickness. A first conductive via contacts at least one of the first or second gate conductors and the conductive via extends through the first and second dielectric liners at the overlap region. A second conductive via may contact at least one of a source region or a drain region of the second semiconductor device.
    • 提供一种半导体结构,其包括第一有源半导体区域中的第一半导体器件和第二有源半导体区域中的第二半导体器件。 第一电介质衬垫覆盖在第一半导体器件上,并且第二电介质衬垫覆盖在第二半导体器件上,第二电介质衬垫在重叠区域与第一电介质衬垫重叠。 第二电介质衬垫具有第一部分,第一部分具有与第二栅极导体的顶点接触的第一厚度和从第二栅极导体的周边边延伸的第二部分,第二部分具有基本上大于第一厚度的第二厚度。 第一导电通孔接触第一或第二栅极导体和导电通孔中的至少一个延伸穿过第一和第二电介质衬垫在重叠区域。 第二导电通孔可以接触第二半导体器件的源极区域或漏极区域中的至少一个。
    • 163. 发明授权
    • Method for producing field effect device that includes epitaxially growing SiGe source/drain regions laterally from a silicon body
    • 用于制造场效应器件的方法,其包括从硅体横向生长SiGe源极/漏极区域
    • US07368358B2
    • 2008-05-06
    • US11345955
    • 2006-02-02
    • Qiqing C. OuyangXiangdong Chen
    • Qiqing C. OuyangXiangdong Chen
    • H01L21/20H01L21/8238
    • H01L29/66636H01L21/823807H01L21/823814H01L29/1054H01L29/7841
    • A structure, and method of fabrication, for high performance field effect devices is disclosed. The MOS structures include a crystalline Si body of one conductivity type, a strained SiGe layer epitaxially grown on the Si body serving as a buried channel for holes, a Si layer epitaxially grown on the SiGe layer serving as a surface channel for electrons, and a source and a drain containing an epitaxially deposited, strained SiGe of opposing conductivity type than the Si body. The SiGe source/drain forms a heterojunction and a metallurgical junction with the Si body that coincide with each other with a tolerance of less than about 10 nm, and preferably less than about 5 nm. The heterostructure source/drain is instrumental in reducing short channel effects. These structures are especially advantageous for PMOS due to increased hole mobility in the compressively strained SiGe channel. Representative embodiments include CMOS structures on bulk and on SOI.
    • 公开了一种用于高性能场效应器件的结构和制造方法。 MOS结构包括一种导电类型的晶体Si体,在用作空穴的掩埋沟道的Si体上外延生长的应变SiGe层,在用作电子的表面通道的SiGe层上外延生长的Si层,以及 源极和漏极,其包含与Si体相反的导电类型的外延沉积的应变SiGe。 SiGe源极/漏极与Si体形成异质结和冶金结,其彼此重合,具有小于约10nm,优选小于约5nm的公差。 异质结构源/漏极有助于减少短沟道效应。 由于在压缩应变SiGe通道中空穴迁移率增加,这些结构对于PMOS是特别有利的。 代表性的实施例包括在本体上和在SOI上的CMOS结构。
    • 165. 发明申请
    • DUAL STRESS LINER
    • 双应力衬管
    • US20070269942A1
    • 2007-11-22
    • US11383560
    • 2006-05-16
    • Xiangdong ChenHaining S. Yang
    • Xiangdong ChenHaining S. Yang
    • H01L21/8234
    • H01L21/823807H01L29/7842
    • A semiconductor device structure is provided which includes a first field effect transistor (“FET”) having a first channel region, a first source region, a first drain region and a first gate conductor overlying the first channel region. A second FET is included which has a second channel region, a second source region, a second drain region and a second gate conductor overlying the second channel region. The first and second gate conductors are portions of a single elongated conductive member extending over both the first and second channel regions. A first stressed film overlies the first FET, the first stressed film applying a stress having a first value to the first channel region. A second stressed film overlies the second FET, the second stressed film applying a stress having a second value to the second channel region. The second value is substantially different from the first value. In addition, the first and second stressed films abut each other at a common boundary and present a substantially co-planar major surface at the common boundary.
    • 提供一种半导体器件结构,其包括第一场效应晶体管(“FET”),其具有第一沟道区,第一源极区,第一漏极区和覆盖第一沟道区的第一栅极导体。 包括第二FET,其具有覆盖第二沟道区的第二沟道区,第二源极区,第二漏极区和第二栅极导体。 第一和第二栅极导体是在第一和第二沟道区两者上延伸的单个细长导电构件的部分。 第一应力膜覆盖第一FET,第一应力膜将具有第一值的应力施加到第一沟道区。 第二应力膜覆盖第二FET,第二应力膜向第二沟道区施加具有第二值的应力。 第二个值与第一个值大不相同。 此外,第一和第二应力膜在共同边界处彼此邻接并且在共同边界处呈现基本上共平面的主表面。
    • 166. 发明授权
    • High mobility heterojunction complementary field effect transistors and methods thereof
    • 高迁移率异质结互补场效应晶体管及其方法
    • US07057216B2
    • 2006-06-06
    • US10698122
    • 2003-10-31
    • Qiqing Christine OuyangXiangdong Chen
    • Qiqing Christine OuyangXiangdong Chen
    • H01L29/778
    • H01L29/66636H01L21/823807H01L21/823814H01L29/1054H01L29/7841
    • In all representative embodiments presented, the Ge concentration in the source and drain 10 and the SiGe epitaxial channel layer 20 is in the 15% to 50% range, preferably between about 20% to 40%. The SiGe thicknesses in the source/drain 10 are staying below the critical thickness for the given Ge concentration. The critical thickness is defined such that above it the SiGe will relax and defects and dislocations will form. The thickness of the SiGe epitaxial layer 20 typically is between about 5nm and 15nm. The thickness of the epitaxial Si layer 30 is typically between about 5nm and 15nm. FIG. 1A shows an embodiment where the body is bulk Si. These type of devices are the most common devices in present day microelectronics. FIGS. 1B and 1C show representative embodiment of the heterojunction source/drain FET device when the Si body 40 is disposed on top of an insulating material 55. This type of technology is commonly referred to as silicon on insulator (SOI) technology. The insulator material 55 usually, and preferably, is SiO2. FIG. 1B shows an SOI embodiment where the body 40 has enough volume to contain mobile charges. Such SOI devices are called partially depleted devices. FIG. 1C shows an SOI embodiment where the volume of the body 40 is insufficient to contain mobile charges. Such SOI devices are called fully depleted devices. For devices shown in FIG. 1B and 1C there is, at least a thin, layer of body underneath the source and drain 10. This body material serves as the seed material onto which the epitaxial SiGe source and drain 10 are grown. In an alternate embodiment, shown in FIG. 1D. for extremely thin fully depleted SOI devices, one could grow the source and drain 10 laterally, from a lateral seeding, in which case the source and drain 10 would penetrate all the way down to the insulating layer 55.
    • 公开了一种用于高性能场效应装置的结构和制造方法。 MOS结构包括一个导电类型的晶体Si体,在作为空穴的掩埋沟道的Si体上外延生长的外延生长的SiGe层,在用作电子的表面通道的SiGe层上外延生长的Si层,以及漏极 含有与Si体相反的导电类型的外延沉积的应变SiGe。 SiGe源极/漏极与Si体形成异质结和冶金结,它们彼此重合,其公差小于约10nm,优选小于约5nm。 异质结构源/漏极有助于减少短沟道效应。 由于在压缩应变的SiGe沟道中增加的空穴迁移率,这些结构对于PMOS是特别有利的。代表性的实施例包括大块和SOI上的CMOS结构。