会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 124. 发明申请
    • Fast and Robust Classification Algorithm for Vein Recognition Using Infrared Images
    • 使用红外图像进行静脉识别的快速鲁棒分类算法
    • US20130268563A1
    • 2013-10-10
    • US13443615
    • 2012-04-10
    • Derek ShiellJing Xiao
    • Derek ShiellJing Xiao
    • G06F17/30
    • G06F17/30G06K9/00G06K9/00885G06K2009/00932G06N99/005
    • A specific item within an item class is identified by defining sets of descriptor data from a training library. The collected descriptor data is grouped and organized into a hierarchical tree, where each leaf node is defined by relations between corresponding parts of the descriptor data. Registrable sets of descriptor data are then identified from a collection of registrable samples. The registrable sets of descriptors are sorted into the hierarchical tree. When an input sample to be identified is received, a test set of descriptor data is generated from the input sample. The test set is then sorted into the hierarchical tree. Each leaf node that receives a part of the test set provides a vote for the registered samples it contains. The registered sample with the most votes is deemed a match for the input sample.
    • 通过从训练库中定义描述符数据集来识别项目类别中的特定项目。 收集的描述符数据被分组并组织成分层树,其中每个叶节点由描述符数据的相应部分之间的关​​系定义。 然后从可注册样本的集合中识别可注册的描述符数据集。 描述符的可注册集合被分类到分层树中。 当接收到要识别的输入样本时,从输入样本生成描述符数据的测试集。 然后将测试集排序到分层树中。 接收测试集的一部分的每个叶节点为其包含的已注册样本提供投票。 投票数最多的注册样本被认为是输入样本的匹配项。
    • 125. 发明申请
    • Multiview Face Content Creation
    • Multiview Face Content创作
    • US20130127827A1
    • 2013-05-23
    • US13303044
    • 2011-11-22
    • Derek ShiellJing Xiao
    • Derek ShiellJing Xiao
    • G06T15/00
    • G06T17/00G06T15/205
    • New views of a 2D image are generated by identifying an object class within the image, such as through a face detector. The face is then fitted to a model face by means of an AAM, and the results extended to a fitted 3D polygon mesh face. A boundary perimeter with predefined anchor points and a predefined triangulation with the 3D polygon mesh is defined a predefined depth distance from the depth center of known landmarks within the 3D polygon mesh face. By rotating the 3D polygon mesh face relative to the boundary perimeter, which may follow the perimeter of the input image, new views of the input image are generated.
    • 通过识别图像内的对象类(例如通过面部检测器)来生成2D图像的新视图。 然后通过AAM将面部安装到模型面上,并将结果扩展到拟合的3D多边形网格面。 定义了与3D多边形网格预定义三角剖分的边界周界,与3D多边形网格面内的已知界标深度中心的预定深度距离。 通过旋转3D多边形网格面相对于可能跟随输入图像的周边的边界周界,生成输入图像的新视图。
    • 126. 发明申请
    • Adaptive Threshold for Object Detection
    • 对象检测的自适应阈值
    • US20130034263A1
    • 2013-02-07
    • US13198412
    • 2011-08-04
    • Yuanyuan DingJing Xiao
    • Yuanyuan DingJing Xiao
    • G06K9/00
    • G06K9/624G06K9/4642G06K9/6269
    • Systems and methods for developing and using adaptive threshold values for different input images for object detection are disclosed. In embodiments, detector response histogram-based systems and methods train models for predicting optimal threshold values for different images. In embodiments, when training the model, an optimal threshold value for an image is defined as the value that maximizes the reduction of false positive image patches while preserving as many true positive image patches as possible. Once trained, the model may be used to set different threshold values for different images by inputting a detector response histogram for the image patches of an image into the model to determine a threshold value for detection.
    • 公开了用于开发和使用用于对象检测的不同输入图像的自适应阈值的系统和方法。 在实施例中,基于检测器响应直方图的系统和方法训练用于预测不同图像的最佳阈值的模型。 在实施例中,当训练模型时,图像的最佳阈值被定义为最大化假阳性图像斑块的减少的值,同时保留尽可能多的真正的正图像斑块。 一旦被训练,该模型可以用于通过将图像的图像块的检测器响应直方图输入到模型中来确定用于检测的阈值来为不同的图像设置不同的阈值。
    • 127. 发明申请
    • Context and Epsilon Stereo Constrained Correspondence Matching
    • 背景和Epsilon立体声约束函数匹配
    • US20130002828A1
    • 2013-01-03
    • US13175114
    • 2011-07-01
    • Yuanyuan DingJing Xiao
    • Yuanyuan DingJing Xiao
    • H04N5/225H04N13/02G06K9/00
    • G02B17/08G02B17/0836G03B37/04G03B37/06G06K9/4671G06T15/205H04N13/239H04N2013/0081
    • A catadioptric camera having a perspective camera and multiple curved mirrors, images the multiple curved mirrors and uses the epsilon constraint to establish a vertical parallax between points in one mirror and their corresponding reflection in another. An ASIFT transform is applied to all the mirror images to establish a collection of corresponding feature points, and edge detection is applied on mirror images to identify edge pixels. A first edge pixel in a first imaged mirror is selected, its 25 nearest feature points are identified, and a rigid transform is applied to them. The rigid transform is fitted to 25 corresponding feature points in a second imaged mirror. The closes edge pixel to the expected location as determined by the fitted rigid transform is identified, and its distance to the vertical parallax is determined. If the distance is not greater than predefined maximum, then it is deemed correlate to the edge pixel in the first imaged mirror.
    • 具有透视相机和多个弯曲反射镜的反折射相机,对多个弯曲镜进行成像,并使用epsilon约束在一个镜中的点之间建立垂直视差及其在另一个镜中的相应反射。 将ASIFT变换应用于所有镜像以建立相应特征点的集合,并且将边缘检测应用于镜像以识别边缘像素。 选择第一成像镜中的第一边缘像素,其25个最近的特征点被识别,并且对它们施加刚性变换。 刚性变换适合于第二个成像镜中的25个对应的特征点。 识别通过拟合的刚性变换确定的到预期位置的闭合边缘像素,并且确定其到垂直视差的距离。 如果距离不大于预定义的最大值,则认为其与第一成像镜中的边缘像素相关。
    • 128. 发明授权
    • Subdivision weighting for robust object model fitting
    • 鲁棒对象模型拟合的细分权重
    • US08260038B2
    • 2012-09-04
    • US12392840
    • 2009-02-25
    • Jing XiaoDerek Shiell
    • Jing XiaoDerek Shiell
    • G06K9/00G06T17/00
    • G06T17/20G06K9/00281G06K9/621
    • Aspects of the present invention include systems and methods for forming generative models, for utilizing those models, or both. In embodiments, an object model fitting system can be developed comprising a 3D active appearance model (AAM) model. The 3D AAM comprises an appearance model comprising a set of subcomponent appearance models that is constrained by a 3D shape model. In embodiments, the 3D AAM may be generated using a balanced set of training images. The object model fitting system may further comprise one or more manifold constraints, one or more weighting factors, or both. Applications of the present invention include, but are not limited to, modeling and/or fitting face images, although the teachings of the present invention can be applied to modeling/fitting other objects.
    • 本发明的方面包括用于形成生成模型的系统和方法,用于利用这些模型或两者。 在实施例中,可以开发包括3D活动外观模型(AAM)模型的对象模型拟合系统。 3D AAM包括由3D形状模型约束的一组子组件外观模型的外观模型。 在实施例中,可以使用平衡的训练图像集来生成3D AAM。 对象模型拟合系统还可以包括一个或多个歧管约束,一个或多个加权因子,或两者。 本发明的应用包括但不限于建模和/或配合面部图像,尽管本发明的教导可以应用于建模/拟合其他对象。
    • 129. 发明申请
    • 3D Current Reconstruction From 2D Dense MCG Images
    • 2D密集MCG图像的3D当前重建
    • US20120219195A1
    • 2012-08-30
    • US13300353
    • 2011-11-18
    • Chenyu WuJing Xiao
    • Chenyu WuJing Xiao
    • G06K9/00
    • A61B5/04007G06K9/0057
    • A current dipole is determined by solving the inverse problem multiple times in consecutive stages. At each stage, a new high resolution image is generated from a magnetic field map from the immediately previous stage, and at each stage more constraints are extracted from the current high resolution image than were available in the immediately previous stage. After the constraints are extracted from a current high resolution image, the current high resolution is updated to incorporate constraints from the immediately previous stage. The updated high resolution image, and the currently extracted constraints are used to resolve the inverse problem, and the Biot-Savart law is used to calculated the current dipole.
    • 通过在连续的阶段多次求解反问题来确定电流偶极子。 在每个阶段,从紧接的前一阶段的磁场图生成新的高分辨率图像,并且在每个阶段,从当前的高分辨率图像中提取比在紧接的前一阶段可用的更多约束。 在从当前的高分辨率图像提取约束之后,更新当前的高分辨率以包含来自紧接的前一阶段的约束。 更新的高分辨率图像和当前提取的约束被用于解决逆问题,并且使用Biot-Savart定律来计算当前偶极子。
    • 130. 发明申请
    • Hierarchical Tree AAM
    • 分层树AAM
    • US20120195495A1
    • 2012-08-02
    • US13017891
    • 2011-01-31
    • Derek ShiellJing Xiao
    • Derek ShiellJing Xiao
    • G06K9/62
    • G06K9/00275G06K9/6219G06K9/6282
    • An active appearance model is built by arranging the training images in its training library into a hierarchical tree with the training images at each parent node being divided into two child nodes according to similarities in characteristic features. The number of node levels is such that the number of training images associated with each leaf node is smaller than a predefined maximum. A separate AAM, one per leaf node, is constructed using each leaf node's corresponding training images. In operation, starting at the root node, a test image is compared with each parent node's two child nodes and follows a node-path of model images that most closely matches the test image. The test image is submitted to an AAM selected for being associated with the leaf node at which the test image rests. The selected AAM's output aligned image may be resubmitted to the hierarchical tree if sufficient alignment is not achieved.
    • 通过将其训练库中的训练图像布置到分级树中,根据特征特征的相似性,将每个父节点处的训练图像分为两个子节点,构建主动外观模型。 节点级别的数量使得与每个叶节点相关联的训练图像的数量小于预定义的最大值。 使用每个叶节点的相应训练图像构建单独的AAM,每个叶节点一个。 在操作中,从根节点开始,将测试图像与每个父节点的两个子节点进行比较,并跟随与测试图像最匹配的模型图像的节点路径。 测试图像被提交给被选择用于与测试图像所在的叶节点相关联的AAM。 如果未实现足够的对准,则所选择的AAM的输出对齐图像可以重新提交到分层树。