会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 95. 发明授权
    • Method for fabricating Group III nitride compound semiconductor substrates and semiconductor devices
    • 制备III族氮化物化合物半导体衬底和半导体器件的方法
    • US06855620B2
    • 2005-02-15
    • US10258546
    • 2001-03-02
    • Masayoshi KoikeSeiji NagaiYuta Tezen
    • Masayoshi KoikeSeiji NagaiYuta Tezen
    • C30B29/38H01L21/20H01L21/205H01L33/06H01L33/32H01S5/323H01S5/343H01L21/36H01L31/0336H01L31/3028
    • H01L21/0254H01L21/0237H01L21/0242H01L21/02458H01L21/0262H01L21/02631H01L21/02639H01L21/0265H01L33/007H01L33/0075
    • A GaN layer 31 is subjected to etching, so as to form an island-like structure having, for example, a dot, stripe, or grid shape, thereby providing a trench/mesa structure including mesas and trenches whose bottoms sink into the surface of a substrate base 1. Subsequently, a GaN layer 32 is lateral-epitaxially grown with the top surfaces of the mesas and sidewalls of the trenches serving as nuclei, to thereby fill upper portions of the trenches (depressions of the substrate base 1), and then epitaxial growth is effected in the vertical direction. In this case, propagation of threading dislocations contained in the GaN layer 31 can be prevented in the upper portion of the GaN layer 32 that is formed through lateral epitaxial growth. Thereafter, the remaining GaN layer 31 is removed through etching, together with the GaN layer 32 formed atop the GaN layer 31, and subsequently, a GaN layer 33 is lateral-epitaxially grown with the top surfaces of mesas and sidewalls of trenches serving as nuclei, the mesas and trenches being formed of the remaining GaN layer 32, thereby producing a GaN substrate 30 in which threading dislocations are considerably suppressed. When the area of a portion of the GaN layer 31 at which the GaN substrate 30 is in contact with the substrate base 1 is reduced, separation of the GaN substrate 30 from the substrate base 1 is readily attained.
    • 对GaN层31进行蚀刻,以形成例如点状,条状或格子状的岛状结构,从而提供包括台面和沟槽的沟槽/台面结构,其底部沉入到 接下来,GaN层32被横向外延生长,台阶的顶表面和沟槽的侧壁用作核,从而填充沟槽的上部(衬底1的凹陷),以及 则在垂直方向进行外延生长。 在这种情况下,在通过横向外延生长形成的GaN层32的上部可以防止包含在GaN层31中的穿透位错的传播。 此后,残留的GaN层31与形成在GaN层31顶上的GaN层32一起通过蚀刻去除,随后,GaN层33被横向外延生长,作为用作核的沟槽的台面和侧壁的顶面 ,台面和沟槽由剩余的GaN层32形成,从而产生显着地抑制穿透位错的GaN衬底30。 当GaN衬底30与衬底基底1接触的部分GaN层31的面积减小时,容易获得GaN衬底30与衬底基底1的分离。
    • 96. 发明授权
    • Group III nitride compound semiconductor laser
    • III族氮化物化合物半导体激光器
    • US06801559B2
    • 2004-10-05
    • US10383229
    • 2003-03-07
    • Takashi HatanoSho IwayamaMasayoshi Koike
    • Takashi HatanoSho IwayamaMasayoshi Koike
    • H01S319
    • B82Y20/00H01S5/2004H01S5/209H01S5/22H01S5/34333H01S2301/18
    • A semiconductor laser comprises a sapphire substrate, an AlN buffer layer, Si-doped GaN n-layer, Si-doped Al0.1Ga0.9N n-cladding layer, Si-doped GaN n-guide layer, an active layer having multiple quantum well (MQW) structure in which about 35 Å in thickness of GaN barrier layer 62 and about 35 Å in thickness of Ga0.95In0.55N well layer 61 are laminated alternately, Mg-doped GaN p-guide layer, Mg-doped Al0.25Ga0.75N p-layer, Mg-doped Al0.1Ga0.9N p-cladding layer, and Mg-doped GaN p-contact layer are formed successively thereon. A ridged hole injection part B which contacts to a ridged laser cavity part A is formed to have the same width as the width w of an Ni electrode. Because the p-layer has a larger aluminum composition, etching rate becomes smaller and that can prevent from damaging the p-guide layer in this etching process.
    • 半导体激光器包括蓝宝石衬底,AlN缓冲层,Si掺杂GaN n层,Si掺杂的Al 0.1 Ga 0.9 N n包层,Si掺杂的GaN n引导层,具有多个量子阱的有源层 (MQW)结构,其中GaN阻挡层62的厚度约为35,Ga0.95In0.55N阱层61的厚度约为35,Mg掺杂的GaN引导层,Mg掺杂的Al0.25Ga0 在其上依次形成了.75N p层,Mg掺杂的Al 0.1 Ga 0.9 N p包覆层和掺杂Mg的GaN p接触层。 与脊状激光腔部A接触的脊状空穴注入部B形成为与Ni电极的宽度w相同的宽度。 因为p层具有较大的铝组成,所以蚀刻速率变小,并且可以防止在该蚀刻工艺中损坏p导向层。
    • 99. 发明授权
    • Light-emitting semiconductor device using group III nitride compound
    • 使用III族氮化物化合物的发光半导体器件
    • US06645785B2
    • 2003-11-11
    • US09909895
    • 2001-07-23
    • Masayoshi KoikeShinya Asami
    • Masayoshi KoikeShinya Asami
    • H01L2100
    • H01L33/325B82Y20/00H01L33/06
    • An emission layer (5) for a light source device is formed to have a multi-layer structure, doped with an acceptor and a donor impurity. The multi-layer structure may include a quantum well (QW) structure or a multi quantum well (MQW) structure (50). With such a structure, a peak wavelength of the light source can be controlled, because the distances between atoms of the acceptor and the donor impurities are widened. Several arrangements can be made by, e.g., altering the thickness of each composite layer of the multi-layer structure, altering their composition ratio, forming undoped layer 5 between the impurity doped layers, and so forth. Further, luminous intensity of ultra violet color can be improved, because doping the donor impurity and the acceptor impurity realizes a donor-acceptor emission mechanism and abundant carriers. Several arrangements can be made by, e.g., optimizing the materials of the composite layers, optimizing their composition ratios, optimizing their lattice constants, and so forth to further enhance the luminous intensity of the light source.
    • 用于光源器件的发射层(5)形成为具有掺杂有受主和施主杂质的多层结构。 多层结构可以包括量子阱(QW)结构或多量子阱(MQW)结构(50)。 通过这样的结构,可以控制光源的峰值波长,因为受主的原子与供体杂质之间的距离变宽。 可以通过例如改变多层结构的每个复合层的厚度,改变它们的组成比,在杂质掺杂层之间形成未掺杂的层5等来进行几种布置。 此外,可以提高紫外线的发光强度,因为掺杂施主杂质和受主杂质实现了供体 - 受体发射机制和丰富的载体。 可以通过例如优化复合层的材料,优化其组成比,优化其晶格常数等来进行若干布置,以进一步增强光源的发光强度。