会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 7. 发明申请
    • SPAM FLOOD DETECTION METHODOLOGIES
    • 垃圾邮件检测方法
    • US20170026267A1
    • 2017-01-26
    • US15285094
    • 2016-10-04
    • salesforce.com, inc.
    • Dai Duong Doan
    • H04L12/26H04L29/06G06F17/30H04L12/58
    • H04L43/16G06F17/30864G06F17/30867G06F17/30896G06Q10/107H04L43/08H04L51/12H04L63/123H04L63/1483
    • A computer-implemented method and system are provided in which characteristics of a website are analyzed to determine whether the website represents a potential source of spam, and, in response to the analyzing, flags content of the website as spam content. To analyze the website, a total number of posts associated with the website is computed and a publication frequency for the total number of posts can then be calculated. Based on the computed total number and the calculated publication frequency, it can be determined whether the website in its entirety represents spam content. For instance, the calculated publication frequency can be compared to a threshold frequency, and when the calculated publication frequency is greater than the threshold frequency, the website in its entirety as can be identified and flagged as spam content.
    • 提供了一种计算机实现的方法和系统,其中分析网站的特征以确定网站是否代表潜在的垃圾邮件源,并且响应于分析,将网站的内容标记为垃圾内容。 为了分析网站,计算与该网站相关联的总数,并且可以计算出总数的出版频率。 基于计算出的总数和计算的出版频率,可以确定网站是否全部表示垃圾内容。 例如,计算的出版物频率可以与阈值频率进行比较,并且当所计算的出版物频率大于阈值频率时,整个网站可被识别并标记为垃圾内容。
    • 8. 发明授权
    • Spam flood detection methodologies
    • 垃圾邮件洪水检测方法
    • US09553783B2
    • 2017-01-24
    • US14021941
    • 2013-09-09
    • salesforce.com, inc.
    • Dai Duong Doan
    • H04L12/24H04L12/26H04L12/58G06Q10/10H04L29/06
    • H04L43/16G06F17/30864G06F17/30867G06F17/30896G06Q10/107H04L43/08H04L51/12H04L63/123H04L63/1483
    • A computer-implemented method analyzes a website to determine whether the website represents a potential source of spam, and, in response to the analyzing, flags content of the website as spam content. The determination can be made by computing a total number of content items associated with the website, calculating a publication frequency of the content items, and determining whether the website in its entirety represents spam content based on the total number and the publication frequency. The determination could also be made by generating a signature of a webpage containing a content item, obtaining an occurrence count for the generated characterizing signature, and, when the obtained occurrence count is greater than a threshold count, identifying the content item as spam.
    • 计算机实现的方法分析网站以确定网站是否代表垃圾的潜在来源,并且响应于分析,将网站的内容标记为垃圾内容。 可以通过计算与网站相关联的内容项目的总数量,计算内容项目的发布频率,以及基于总数量和出版频率来确定网站是否全部表示垃圾内容来进行确定。 还可以通过生成包含内容项目的网页的签名,获得所生成的特征签名的发生计数,以及当所获得的发生次数大于阈值计数时,将内容项目识别为垃圾邮件来进行确定。
    • 9. 发明申请
    • SPAM FLOOD DETECTION METHODOLOGIES
    • 垃圾邮件检测方法
    • US20140082182A1
    • 2014-03-20
    • US14021941
    • 2013-09-09
    • salesforce.com, inc.
    • Dai Duong Doan
    • H04L12/26
    • H04L43/16G06F17/30864G06F17/30867G06F17/30896G06Q10/107H04L43/08H04L51/12H04L63/123H04L63/1483
    • A computer-implemented method analyzes a website to determine whether the website represents a potential source of spam, and, in response to the analyzing, flags content of the website as spam content. The determination can be made by computing a total number of content items associated with the website, calculating a publication frequency of the content items, and determining whether the website in its entirety represents spam content based on the total number and the publication frequency. The determination could also be made by generating a signature of a webpage containing a content item, obtaining an occurrence count for the generated characterizing signature, and, when the obtained occurrence count is greater than a threshold count, identifying the content item as spam.
    • 计算机实现的方法分析网站以确定网站是否代表垃圾的潜在来源,并且响应于分析,将网站的内容标记为垃圾内容。 可以通过计算与网站相关联的内容项目的总数量,计算内容项目的发布频率,以及基于总数量和出版频率来确定网站是否全部表示垃圾内容来进行确定。 还可以通过生成包含内容项目的网页的签名,获得所生成的特征签名的发生计数,以及当所获得的发生次数大于阈值计数时,将内容项目识别为垃圾邮件来进行确定。