会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 5. 发明申请
    • METHODS, SYSTEMS, AND MEDIA FOR MASQUERADE ATTACK DETECTION BY MONITORING COMPUTER USER BEHAVIOR
    • 监控计算机用户行为的MASTERERADE攻击检测方法,系统和媒体
    • US20100269175A1
    • 2010-10-21
    • US12628587
    • 2009-12-01
    • Salvatore J. StolfoMalek Ben SalemShlomo Hershkop
    • Salvatore J. StolfoMalek Ben SalemShlomo Hershkop
    • G06F11/00
    • H04L63/1416G06F21/50G06F21/55G06F21/552G06F21/554G06F21/566H04L29/06884H04L29/06897H04L63/1408H04L63/1425H04L63/1491
    • Methods, systems, and media for masquerade attack detection by monitoring computer user behavior are provided. In accordance with some embodiments, a method for detecting masquerade attacks is provided, the method comprising: monitoring a first plurality of user actions and access of decoy information in a computing environment; generating a user intent model for a category that includes at least one of the first plurality of user actions; monitoring a second plurality of user actions; comparing the second plurality of user actions with the user intent model by determining deviation from the generated user intent model; identifying whether the second plurality of user actions is a masquerade attack based at least in part on the comparison; and generating an alert in response to identifying that the second plurality of user actions is the masquerade attack and in response to determining that the second plurality of user actions includes accessing the decoy information in the computing environment.
    • 提供了通过监控计算机用户行为进行伪装攻击检测的方法,系统和媒体。 根据一些实施例,提供了一种用于检测伪装攻击的方法,所述方法包括:在计算环境中监视第一多个用户动作和诱捕信息的访问; 为包括所述第一多个用户动作中的至少一个的类别生成用户意图模型; 监视第二多个用户动作; 通过确定与所生成的用户意图模型的偏差来比较第二多个用户动作与用户意图模型; 至少部分地基于所述比较来识别所述第二多个用户动作是否是伪装攻击; 以及响应于识别所述第二多个用户动作是所述伪装攻击而响应于响应于确定所述第二多个用户动作包括访问所述计算环境中的诱饵信息而产生警报。
    • 7. 发明申请
    • Detecting spam email using multiple spam classifiers
    • 使用多个垃圾邮件分类器检测垃圾邮件
    • US20060149821A1
    • 2006-07-06
    • US11029069
    • 2005-01-04
    • Vadakkedathu RajanMark WegmanRichard SegalJason CrawfordJeffrey KephartShlomo Hershkop
    • Vadakkedathu RajanMark WegmanRichard SegalJason CrawfordJeffrey KephartShlomo Hershkop
    • G06F15/16
    • H04L51/12G06Q10/107
    • A method for detecting undesirable emails is disclosed. The method combines input from two or more spam classifiers to provide improved classification effectiveness and robustness. The method's effectiveness is improved over that of any one constituent classifier in the sense that the detection rate is increased and/or the false positive rate is decreased. The method's robustness is improved in the sense that, if spammers temporarily elude any one constituent classifier, the other constituent classifiers will still be likely to catch the spam. The method includes obtaining a score from each of a plurality of constituent spam classifiers by applying them to a given input email. The method further includes obtaining a combined spam score from a combined spam classifier that takes as input the plurality of constituent spam classifier scores, the combined spam classifier being computed automatically in accordance with a specified false-positive vs. false-negative tradeoff. The method further includes identifying the given input email as an undesirable email if the combined spam score indicates that the input e-mail is undesirable.
    • 公开了一种用于检测不期望的电子邮件的方法。 该方法结合了两个或更多个垃圾邮件分类器的输入,以提供改进的分类有效性和鲁棒性。 在检测率提高和/或假阳性率降低的意义上,该方法的有效性比任何一个构成分类器的有效性得到改善。 该方法的鲁棒性得到改善,因为如果垃圾邮件发送者暂时排除任何一个构成分类器,则其他组成分类器仍然可能会捕获垃圾邮件。 该方法包括通过将其应用于给定的输入电子邮件来从多个组成垃圾邮件分类器中的每一个获得分数。 所述方法还包括从组合的垃圾邮件分类器获得组合的垃圾邮件分数,所述组合垃圾邮件分类器将所述多个组成垃圾邮件分类器分数作为输入,所述组合的垃圾邮件分类器根据指定的假阳性与假阴性权衡自动计算。 如果组合的垃圾邮件评分指示输入的电子邮件是不期望的,该方法还包括将给定的输入电子邮件识别为不期望的电子邮件。