会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Motor control device
    • US11336213B2
    • 2022-05-17
    • US16969516
    • 2019-01-21
    • SANDEN AUTOMOTIVE COMPONENTS CORPORATION
    • Masafumi HottaDaisuke Hirono
    • H02P6/182H02P6/185H02P6/20
    • Provided is a motor control device having a function for determining a rotor position of a synchronous motor, without use of a sensor, the device prevents obtaining an erroneous rotor position, to enable stable control of the synchronous motor based on the rotor position in both the normal-control region and the flux-weakening-control region. The motor control device 1 includes: a first rotor position determining unit 19 that determines a rotor position of the synchronous motor 2 based on a current electrical angle, and a first current phase obtained from a current peak value and a difference between an induced voltage electrical angle and a current electrical angle; a second rotor position determining unit 20 that determines the rotor position of the synchronous motor 2 based on the current electrical angle, and a second current phase obtained from a flux linkage and the current peak value; and a selecting unit 21 that selects the first rotor position determining unit 19 or the second rotor position determining unit 20, based on the current peak value, and the first current phase or the second current phase.
    • 3. 发明授权
    • Motor control device
    • US10516354B2
    • 2019-12-24
    • US16084799
    • 2017-02-24
    • Sanden Automotive Components Corporation
    • Takeo TsukamotoMasafumi HottaDaisuke Hirono
    • H02P6/182
    • To provide a motor control device capable of determining a rotor position with high accuracy not only in normal control but also in flux-weakening control. The motor control device includes: a first rotor position determining unit 28 that determines a rotor position of a synchronous motor by using a rotor position calculation formula with, as parameters, current electrical angle or induced voltage electrical angle, and first current phase or first induced voltage phase obtained based on current peak value and [(induced voltage electrical angle)−(current electrical angle)]; a second rotor position determining unit 29 that determines a rotor position of the synchronous motor by using a rotor position calculation formula with, as parameters, current electrical angle or induced voltage electrical angle, and second current phase or second induced voltage phase obtained based on current peak value and flux linkage of a rotor of the synchronous motor; and a selecting unit 30 that selects the first or second rotor position determining unit 28, 29.
    • 4. 发明授权
    • Motor control device
    • US11303234B2
    • 2022-04-12
    • US16969807
    • 2019-01-21
    • SANDEN AUTOMOTIVE COMPONENTS CORPORATION
    • Masafumi HottaDaisuke Hirono
    • H02P6/18
    • Provided is a motor control device having a function for determining a rotor position of a synchronous motor, without use of a sensor, the device prevents obtaining an erroneous rotor position, to enable stable control of the synchronous motor based on the rotor position in both the normal-control region and the flux-weakening-control region. The motor control device 1 includes: a first rotor position determining unit 19 that determines a rotor position of the synchronous motor 2 based on an induced voltage electrical angle, and a first induced voltage phase obtained from a current peak value and a difference between the induced voltage electrical angle and a current electrical angle; a second rotor position determining unit 20 that determines a rotor position of the synchronous motor 2 based on an induced voltage electrical angle, and a second induced voltage phase obtained from a flux linkage and a current peak value; and a selecting unit 21 that selects the first rotor position determining unit 19 or the second rotor position determining unit 20, based on a current peak value, and a first induced voltage phase or a second induced voltage phase.