会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Reversible flow electrohydrodynamic fluid accelerator
    • 可逆流动电动液加速器
    • US08411407B2
    • 2013-04-02
    • US12615909
    • 2009-11-10
    • Nels Jewell-LarsenKenneth A. HonerMatt SchwiebertHongyu RanPiyush SavaliaYan Zhang
    • Nels Jewell-LarsenKenneth A. HonerMatt SchwiebertHongyu RanPiyush SavaliaYan Zhang
    • H01J27/00
    • H02N11/006F04B19/006F28F2250/08G06F1/203
    • Reversible flow may be provided in certain EHD device configurations that selectively energize corona discharge electrodes arranged to motivate flows in generally opposing directions. In some embodiments, a first set of one or more corona discharge electrodes is positioned, relative to a first array of collector electrode surfaces, to when energized, motivate flow in a first direction, while second set of one or more corona discharge electrodes is positioned, relative to a second array of collector electrode surfaces, to when energized, motivate flow in a second direction that opposes the first. In some embodiments, the first and second arrays of collector electrode surfaces are opposing surfaces of individual collector electrodes. In some embodiments, the first and second arrays of collector electrode surfaces are opposing surfaces of respective collector electrodes.
    • 可以在某些EHD器件配置中提供可逆流动,其选择性地激励布置成在大致相反的方向上激励流动的电晕放电电极。 在一些实施例中,相对于集电极表面的第一阵列,第一组一个或多个电晕放电电极被定位成当被激励时,在第一方向上激励流动,同时定位第二组一个或多个电晕放电电极 相对于集电极表面的第二阵列,当被激励时,在与第一方向相反的第二方向上激励流动。 在一些实施例中,集电极表面的第一和第二阵列是各个集电极的相对表面。 在一些实施例中,集电极表面的第一和第二阵列是各个集电极的相对表面。
    • 6. 发明授权
    • Electrohydrodynamic fluid accelerator with heat transfer surfaces operable as collector electrode
    • 具有作为集电极的热传递表面的电动液流体加速器
    • US08411435B2
    • 2013-04-02
    • US12615900
    • 2009-11-10
    • Nels Jewell-LarsenKenneth A. HonerMatt SchwiebertHongyu RanPiyush SavaliaYan Zhang
    • Nels Jewell-LarsenKenneth A. HonerMatt SchwiebertHongyu RanPiyush SavaliaYan Zhang
    • F28D15/00H05K7/20
    • H02N11/006F04B19/006F28F2250/08G06F1/203
    • In thermal management systems that employ EHD devices to motivate flow of air between ventilated boundary portions of an enclosure, it can be desirable to have some heat transfer surfaces participate in electrohydrodynamic acceleration of fluid flow while providing additional heat transfer surfaces that may not. In some embodiments, both collector electrodes and additional heat transfer surfaces are thermally coupled into a heat transfer path. Collector electrodes then contribute both to flow of cooling air and to heat transfer to the air flow so motivated. The collector electrodes and additional heat transfer surfaces may be parts of a unitary, or thermally coupled, structure that is introduced into a flow path at multiple positions therealong. In some embodiments, the collector electrodes and additional heat transfer surfaces may be proximate each other along the flow path. In some embodiments, the collector electrodes and additional heat transfer surfaces may be separate structures.
    • 在使用EHD装置来激励外壳通气边界部分之间的空气流动的热管理系统中,可能希望具有一些传热表面参与流体流动的电流动力学加速,同时提供可能不会的额外的传热表面。 在一些实施例中,收集器电极和附加传热表面都热耦合到传热路径中。 然后,收集器电极对冷却空气的流动进行贡献,并将热量传递给如此积极的气流。 集电极和附加传热表面可以是整体或热耦合的结构的部分,其被引入到沿着多个位置的流动路径中。 在一些实施例中,集电极和附加传热表面可以沿着流动路径彼此靠近。 在一些实施例中,集电极和附加传热表面可以是分离的结构。
    • 8. 发明申请
    • EHD DEVICE IN-SITU AIRFLOW
    • EHD装置现场气流
    • US20120314334A1
    • 2012-12-13
    • US13485559
    • 2012-05-31
    • Nels Jewell-LarsenKenneth A. Honer
    • Nels Jewell-LarsenKenneth A. Honer
    • H01T23/00
    • G06F1/203
    • An electrohydrodynamic (EHD) air mover is positionable within the enclosure to, when energized, motivate air flow through the enclosure along a flow path between the inlet and outlet ventilation boundaries. Ductwork within the enclosure has cross-sections substantially matched to a cross-section of the EHD air mover. A fan curve-type, pressure-air flow characteristic measured for the EHD air mover in open air substantially overstates mechanical impedance of the EHD air mover to air flow along the flow path between the inlet and outlet ventilation boundaries in that, when the EHD air mover is operably positioned within the enclosure appurtenant to the ductwork, no more than about 50% of the mechanical impedance of the EHD air mover indicated by the measured fan curve-type, pressure-air flow characteristic actually contributes to total mechanical impedance to air flow through the enclosure along the flow path between the inlet and outlet ventilation boundaries.
    • 电动水动力(EHD)空气推动器可定位在外壳内,当通电时,沿着入口和出口通风边界之间的流动路径激发通过外壳的空气流。 外壳内的管道工程横截面基本上与EHD鼓风机横截面相匹配。 在空气中测量的EHD空气推进器的风扇曲线式,压力 - 气流特性基本上夸大了EHD空气推进器的机械阻抗与入口和出口通风边界之间的流动路径的空气流动,因为当EHD空气 移动器可操作地定位在与管道系统相连的外壳中,不超过所测量的风扇曲线式所指示的EHD气动机构的机械阻抗的约50%,压力 - 气流特性实际上有助于对气流的总机械阻抗 通过外壳沿着入口和出口通风边界之间的流动路径。
    • 9. 发明申请
    • SPATIALLY DISTRIBUTED VENTILATION BOUNDARY USING ELECTROHYDRODYNAMIC FLUID ACCELERATORS
    • 使用电动液态加速器的空间分布式通风边界
    • US20100116460A1
    • 2010-05-13
    • US12615905
    • 2009-11-10
    • Nels Jewell-LarsenKenneth A. HonerMatt SchwiebertHongyu RanPiyush SavaliaYan Zhang
    • Nels Jewell-LarsenKenneth A. HonerMatt SchwiebertHongyu RanPiyush SavaliaYan Zhang
    • F24H9/02H02K44/02F28D15/00
    • H02N11/006F04B19/006F28F2250/08G06F1/203
    • In thermal management systems that employ EHD devices to motivate flow of air through an enclosure, spatial distribution of a ventilation boundary may facilitate reductions in flow resistance by reducing average transit distance for cooling air from an inlet portion of the ventilation boundary to an outlet portion. Some thermal management systems described herein distribute a ventilation boundary over opposing surfaces, adjacent surfaces or even a single surface of an enclosure while providing a short, “U” shaped, “L” shaped or generally straight through flow path. In some cases, spatial distributions of the ventilation boundary facilitate or enable enclosure geometries for which conventional fan or blower ventilation would be impractical. In some cases, provision of multiple portions of the ventilation boundary may allow the thermal management system to tolerate blockage or occlusion of a subset of the inlet and/or outlet portions and, when at least some of such portions are non-contiguous spatially-distributed, tolerance to a single cause of blockage or occlusion is enhanced.
    • 在采用EHD装置来激励空气流过外壳的热管理系统中,通风边界的空间分布可以通过减少从通风边界的入口部分到出口部分的冷却空气的平均运输距离来促进流动阻力的降低。 本文所述的一些热管理系统在相对表面,相邻表面或甚至单个外壳的表面上分配通气边界,同时提供短的“U”形“L”形或大致直的流动路径。 在某些情况下,通风边界的空间分布有助于或实现常规风扇或鼓风机通风不切实际的外壳几何形状。 在一些情况下,提供通风边界的多个部分可以允许热管理系统容忍入口和/或出口部分的子集的阻塞或闭塞,并且当这些部分中的至少一些是不连续的空间分布 对单一阻塞或闭塞原因的耐受性得到提高。