会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Device for automatically locating a railway vehicle
    • 用于自动定位铁路车辆的装置
    • US06168119A
    • 2001-01-02
    • US09214197
    • 1999-09-20
    • Michael MeierAxel PaulsburgHans-Joachim Vornholz
    • Michael MeierAxel PaulsburgHans-Joachim Vornholz
    • B61L1500
    • B61L3/225
    • On vehicles on which only a single receiving antenna is provided or where a plurality of receiving antennas which are arranged side by side and are coupled to the forward and return conductors of a line conductor are provided, the phase angle of the received voltage is retained when the voltage drops below a given received level. If the level of the received voltage rises again, the prevailing phase angle of the received voltage can be compared with that of the retained received voltage. If the received voltages to be compared are found to be in phase opposition, it is deduced that a line conductor intersection point has been passed; if they are in phase, transient transmission interference is inferred. The phase angle of the comparative voltage is preferably retained by a flywheel oscillator, with the time offset between the prevailing received voltage and the comparative voltage preferably being determined by weighting the peak values of the two voltages.
    • 在仅设置单个接收天线的车辆或并排设置并且连接到线路导体的正向和返回导体的多个接收天线被提供时,接收电压的相位角保持在 电压下降到给定的接收电平以下。 如果接收电压的电平再次上升,则可以将接收电压的主要相位角与保持的接收电压的相位角进行比较。 如果接收到的要比较的电压被认为是相位相反,则推断线路导线交点已经通过; 如果它们处于同相状态,则推断出瞬时传输干扰。 比较电压的相位角优选地由飞轮振荡器保持,其中主要接收电压和比较电压之间的时间偏移优选地通过对两个电压的峰值进行加权来确定。
    • 7. 发明授权
    • Nanoimprint resist
    • 纳米抗蚀剂
    • US07431858B2
    • 2008-10-07
    • US10511402
    • 2003-04-09
    • Walter SpiessFumio KitaMichael MeierAndreas GierMartin MennigPeter W OliveiraHelmut Schmidt
    • Walter SpiessFumio KitaMichael MeierAndreas GierMartin MennigPeter W OliveiraHelmut Schmidt
    • B44C1/22C03C15/00C03C25/68C23F1/00
    • G03F7/0757B82Y10/00B82Y40/00G03F7/0002G03F7/0017G03F7/0047
    • The invention relates to a method for microstructuring electronic components, which yields high resolutions (≦200 nm) at a good aspect ratio while being significantly less expensive than photolithographic methods. The inventive method comprises the following steps: i) a planar unhardened sol film of a nanocomposite composition according to claim 1 is produced; ii) a target substrate consisting of a bottom coat (b) and a support (c) is produced; iii) sol film material obtained in step i) is applied to the bottom coat (b) obtained in step ii) by means of a microstructured transfer embossing stamp; iv) the applied sol film material is hardened; v) the transfer embossing stamp is separated, whereby an embossed microstructure is obtained as a top coat (a). The method for producing a microstructured semiconductor material comprises the following additional steps: vi) the remaining layer of the nanocomposite sol film is plasma etched, preferably with CHF3/O2 plasma; vii) the bottom coat is plasma etched, preferably with O2 plasma; viii) the semiconductor material is etched or the semiconductor material is doped in the etched areas.
    • 本发明涉及一种用于微结构化电子部件的方法,其以良好的纵横比产生高分辨率(<= 200nm),同时显着地低于光刻方法。 本发明的方法包括以下步骤:i)制备根据权利要求1的纳米复合组合物的平面未硬化溶胶膜; ii)制备由底涂层(b)和载体(c)组成的靶基材; iii)在步骤i)中获得的溶胶膜材料通过微结构转印压花印刷施加到在步骤ii)中获得的底涂层(b) iv)涂覆的溶胶膜材料硬化; v)分离转印压花印模,由此获得作为顶涂层(a)的压花微结构。 制造微结构化半导体材料的方法包括以下附加步骤:vi)纳米复合溶胶膜的剩余层被等离子体蚀刻,优选地具有CHF 3 O 2 / O 2等离子体 ; vii)底涂层被等离子体蚀刻,优选为O 2等离子体; viii)蚀刻半导体材料或者在蚀刻区域中掺杂半导体材料。
    • 8. 发明申请
    • Nanoimprint resist
    • 纳米抗蚀剂
    • US20050224452A1
    • 2005-10-13
    • US10511402
    • 2003-04-09
    • Walter SpiessFumio KitaMichael MeierAndreas GierMartin MennigHelmut Schmidt
    • Walter SpiessFumio KitaMichael MeierAndreas GierMartin MennigHelmut Schmidt
    • G03F7/20B81C1/00G03F7/00G03F7/004G03F7/075H01L21/027H01L21/3065C23F1/00B05D5/00B44C1/22C03C15/00C03C25/68G03G15/00H01L21/311H01L29/06
    • G03F7/0757B82Y10/00B82Y40/00G03F7/0002G03F7/0017G03F7/0047
    • The invention relates to a method for microstructuring electronic components, which yields high resolutions (≦200 nm) at a good aspect ratio while being significantly less expensive than photolithographic methods. The inventive method comprises the following steps: i) a planar unhardened sol film of a nanocomposite composition according to claim 1 is produced; ii) a target substrate consisting of a bottom coat (b) and a support (c) is produced; iii) sol film material obtained in step i) is applied to the bottom coat (b) obtained in step ii) by means of a microstructured transfer embossing stamp; iv) the applied sol film material is hardened; v) the transfer embossing stamp is separated, whereby an embossed microstructure is obtained as a top coat (a). The method for producing a microstructured semiconductor material comprises the following additional steps: vi) the remaining layer of the nanocomposite sol film is plasma etched, preferably with CHF3/O2 plasma; vii) the bottom coat is plasma etched, preferably with O2 plasma; viii) the semiconductor material is etched or the semiconductor material is doped in the etched areas.
    • 本发明涉及一种用于微结构化电子部件的方法,其以良好的纵横比产生高分辨率(<= 200nm),同时显着地低于光刻方法。 本发明的方法包括以下步骤:i)制备根据权利要求1的纳米复合组合物的平面未硬化溶胶膜; ii)制备由底涂层(b)和载体(c)组成的靶基材; iii)在步骤i)中获得的溶胶膜材料通过微结构转印压花印刷施加到在步骤ii)中获得的底涂层(b) iv)涂覆的溶胶膜材料硬化; v)分离转印压花印模,由此获得作为顶涂层(a)的压花微结构。 制造微结构化半导体材料的方法包括以下附加步骤:vi)纳米复合溶胶膜的剩余层被等离子体蚀刻,优选地具有CHF 3 O 2 / O 2等离子体 ; vii)底涂层被等离子体蚀刻,优选为O 2等离子体; viii)蚀刻半导体材料或者在蚀刻区域中掺杂半导体材料。