会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • System and method for magnetic resonance brain scan planning
    • 磁共振脑扫描计划的系统和方法
    • US08082019B2
    • 2011-12-20
    • US11856104
    • 2007-09-17
    • Li ZhangCarol NovakHong ChenQing Xu
    • Li ZhangCarol NovakHong ChenQing Xu
    • A61B5/00
    • A61B5/055A61B5/0037A61B5/6814G01R33/4833
    • A method and system for automatic MR brain scan planning is disclosed. The method utilizes a set of 2D orthogonal localizer images to determine scanning planes for 3D diagnostic MR scans. A location of the mid-sagittal plane (MSP) is detected in each of a transversal localizer image and a coronal localizer image. A sagittal scanning plane is determined based on the location of the MSP in the transversal and coronal localizer images. A diagnostic sagittal MR scan is then acquired based on the sagittal scanning plane. The corpus callosum CC is segmented in a sagittal MR image slice resulting from the diagnostic sagittal MR scan. A transversal scanning plane can be determined based on a location of the CC in the sagittal MR image slice and the location of the MSP in the coronal localizer image, and a coronal scanning plane can be determined based on the location of the CC in the sagittal MR image slice and the location of the MSP in the transversal localizer image.
    • 公开了用于自动MR脑扫描计划的方法和系统。 该方法利用一组2D正交定位图像来确定3D诊断MR扫描的扫描平面。 在横向定位器图像和冠状定位器图像中的每一个中检测到中间矢状面(MSP)的位置。 基于MSP在横向和冠状定位器图像中的位置来确定矢状扫描平面。 然后基于矢状扫描平面获取诊断矢状MR扫描。 胼um体CC被分割成由诊断矢状MR扫描得到的矢状MR图像切片。 可以基于矢状位MR图像切片中的CC的位置和冠状位置定位器图像中的MSP的位置来确定横向扫描平面,并且可以基于CC在矢状位置中的位置来确定冠状扫描平面 MR图像切片和MSP在横向定位器图像中的位置。
    • 2. 发明申请
    • System and Method for Magnetic Resonance Brain Scan Planning
    • 磁共振脑扫描规划系统与方法
    • US20080071163A1
    • 2008-03-20
    • US11856104
    • 2007-09-17
    • Li ZhangCarol NovaxHong ChenQing Xu
    • Li ZhangCarol NovaxHong ChenQing Xu
    • A61B5/055
    • A61B5/055A61B5/0037A61B5/6814G01R33/4833
    • A method and system for automatic MR brain scan planning is disclosed. The method utilizes a set of 2D orthogonal localizer images to determine scanning planes for 3D diagnostic MR scans. A location of the mid-sagittal plane (MSP) is detected in each of a transversal localizer image and a coronal localizer image. A sagittal scanning plane is determined based on the location of the MSP in the transversal and coronal localizer images. A diagnostic sagittal MR scan is then acquired based on the sagittal scanning plane. The corpus callosum CC is segmented in a sagittal MR image slice resulting from the diagnostic sagittal MR scan. A transversal scanning plane can be determined based on a location of the CC in the sagittal MR image slice and the location of the MSP in the coronal localizer image, and a coronal scanning plane can be determined based on the location of the CC in the sagittal MR image slice and the location of the MSP in the transversal localizer image.
    • 公开了用于自动MR脑扫描计划的方法和系统。 该方法利用一组2D正交定位图像来确定3D诊断MR扫描的扫描平面。 在横向定位器图像和冠状定位器图像中的每一个中检测到中间矢状面(MSP)的位置。 基于MSP在横向和冠状定位器图像中的位置来确定矢状扫描平面。 然后基于矢状扫描平面获取诊断矢状MR扫描。 胼um体CC被分割成由诊断矢状MR扫描得到的矢状MR图像切片。 可以基于矢状位MR图像切片中的CC的位置和冠状位置定位器图像中的MSP的位置来确定横向扫描平面,并且可以基于CC在矢状位置中的位置来确定冠状扫描平面 MR图像切片和MSP在横向定位器图像中的位置。
    • 3. 发明授权
    • System and method for corpus callosum segmentation in magnetic resonance images
    • 磁共振图像中胼for体分割的系统和方法
    • US07983464B2
    • 2011-07-19
    • US11782828
    • 2007-07-25
    • Qing XuHong ChenLi Zhang
    • Qing XuHong ChenLi Zhang
    • G06K9/00
    • G06K9/6209G06K9/6207G06T7/0012G06T7/12G06T7/149G06T2207/10088G06T2207/20124G06T2207/30016
    • A method and system for segmentation of the corpus callosum in MR brain images is disclosed. The method utilizes an active shape model (ASM) with confidence weighting to iteratively adjust an initial corpus callosum contour to define a boundary of the corpus callosum in an MR image. An ASM is used to determine a displacement value in a perpendicular direction of the corpus callosum contour for each node of the corpus callosum contour. The displacement value for each node is then weighted based on a confidence of that displacement value. The ASM is then fitted to the adjusted contour. These steps are iteratively performed until the contour converges to define the corpus callosum boundary. This boundary can be further refined based on intensity distributions in object and background regions defined by the boundary.
    • 公开了MR脑图像中胼the体分割的方法和系统。 该方法利用具有置信度加权的活动形状模型(ASM)来迭代地调整初始语料库胼los体轮廓,以定义MR图像中胼the体的边界。 ASM用于确定胼the体轮廓的每个节点的胼um体轮廓的垂直方向上的位移值。 然后基于该位移值的置信度对每个节点的位移值加权。 然后将ASM安装到调整后的轮廓上。 迭代地执行这些步骤,直到轮廓收敛以定义胼the体边界。 该边界可以根据由边界定义的对象和背景区域中的强度分布进一步改进。
    • 4. 发明申请
    • System and Method for Corpus Callosum Segmentation in Magnetic Resonance Images
    • 磁共振图像中胼los体分割的系统和方法
    • US20080037848A1
    • 2008-02-14
    • US11782828
    • 2007-07-25
    • Qing XuHong ChenLi Zhang
    • Qing XuHong ChenLi Zhang
    • G06K9/00
    • G06K9/6209G06K9/6207G06T7/0012G06T7/12G06T7/149G06T2207/10088G06T2207/20124G06T2207/30016
    • A method and system for segmentation of the corpus callosum in MR brain images is disclosed. The method utilizes an active shape model (ASM) with confidence weighting to iteratively adjust an initial corpus callosum contour to define a boundary of the corpus callosum in an MR image. An ASM is used to determine a displacement value in a perpendicular direction of the corpus callosum contour for each node of the corpus callosum contour. The displacement value for each node is then weighted based on a confidence of that displacement value. The ASM is then fitted to the adjusted contour. These steps are iteratively performed until the contour converges to define the corpus callosum boundary. This boundary can be further refined based on intensity distributions in object and background regions defined by the boundary.
    • 公开了MR脑图像中胼the体分割的方法和系统。 该方法利用具有置信度加权的活动形状模型(ASM)来迭代地调整初始语料库胼los体轮廓,以定义MR图像中胼the体的边界。 ASM用于确定胼the体轮廓的每个节点的胼um体轮廓的垂直方向上的位移值。 然后基于该位移值的置信度对每个节点的位移值加权。 然后将ASM安装到调整后的轮廓上。 迭代地执行这些步骤,直到轮廓收敛以定义胼the体边界。 该边界可以根据由边界定义的对象和背景区域中的强度分布进一步改进。
    • 5. 发明申请
    • Automatic determination of joint space width from hand radiographs
    • 自动确定手部放射线照片的关节间隙宽度
    • US20070031015A1
    • 2007-02-08
    • US11482445
    • 2006-07-07
    • Hong ChenCarol Novak
    • Hong ChenCarol Novak
    • G06K9/00A61B5/05A61B5/103
    • G06T7/60G06T7/0012G06T7/12G06T7/155G06T2207/10116G06T2207/20044G06T2207/30008Y10S128/922
    • A computer-implemented method for determining a joint space width includes providing image data for a skeleton, thresholding the image data, and performing a connected component analysis on thresholded image data. The method further includes extracting contours of the thresholded image data according to the connected component analysis, performing a skeletonization of the thresholded image data using a first fast marching analysis of the thresholded image data, locating at least one finger joint of skeletonized image data, extracting bone boundaries using a second fast marching analysis of gradient information of the image data inside a region of interest, which includes a finger joint of the at least one finger joint, determining the joint space width given extracted bone boundaries, and outputting the joint space width.
    • 用于确定联合空间宽度的计算机实现的方法包括提供骨架的图像数据,阈值化图像数据以及对阈值化图像数据执行连接分量分析。 该方法还包括根据连通分量分析提取阈值图像数据的轮廓,使用阈值图像数据的第一快速行进分析来执行阈值图像数据的骨架化,定位骨架化图像数据的至少一个手指关节,提取 骨骼边界,其使用包括所述至少一个手指关节的手指关节的所述感兴趣区域内的图像数据的梯度信息的第二快速行进分析,确定给定提取的骨边界的关节空间宽度,以及输出所述关节间隙 。
    • 9. 发明授权
    • Retaining enclosure for above-ground fiber optic/cable network terminal
    • 用于地面光纤/电缆网络终端的保护罩
    • US09470867B1
    • 2016-10-18
    • US14756752
    • 2015-10-08
    • Chun-Nam Chan JamesHong ChenDonovan HammersleyMahmud Harji
    • Chun-Nam Chan JamesHong ChenDonovan HammersleyMahmud Harji
    • G02B6/44
    • G02B6/445G02B6/4447G02B6/4452G02B6/4471
    • The unit for retaining/securing a fiber optic cable comprises an enclosure including a tray having a back base plate, a top and a bottom sides and a unit for retaining/securing a fiber optic cable, disposed in an interior of the enclosure. The bottom side is provided with a pair of identical apertures. Each aperture resembles to a flat shovel having an upper rectangular shape continued by a circular sector; the aperture is so profiled as to engage alternatively a biting-retaining fixture for inserting a cable or an exit grommet for a leaving cable; the former is made of a rigid plastic, while the second—of a soft, elastic polymer. The unit for retaining/securing a fiber optic cable is actuated by a shifting lever, having a shape of an angled, cantilevered part with a longitudinal axis of symmetry bent generally at 90 degrees.
    • 用于保持/固定光纤电缆的单元包括外壳,其包括具有后基板,顶部和底侧的托盘和用于保持/固定设置在外壳内部的光纤电缆的单元。 底侧设有一对相同的孔。 每个孔类似于具有由圆形扇形继续的上矩形的平铲; 该孔是如此轮廓以交替地与咬合保持夹具相配合,用于插入用于离开电缆的电缆或出口护环; 前者由刚性塑料制成,而第二种是柔软的弹性聚合物。 用于保持/固定光纤电缆的单元由变速杆致动,变速杆具有成角度的悬臂部分的形状,其纵向对称轴线通常以90度弯曲。
    • 10. 发明授权
    • Assessing legibility of images
    • 评估图像的易读性
    • US09418310B1
    • 2016-08-16
    • US13529834
    • 2012-06-21
    • Hong ChenMing ZhaoJunqing ShangMichael Patrick BacusSherif M. Yacoub
    • Hong ChenMing ZhaoJunqing ShangMichael Patrick BacusSherif M. Yacoub
    • G06K9/46G06K9/66G06K9/00
    • G06K9/4638G06K9/00442G06K9/036G06K2209/00G06K2209/01
    • In some implementations, legibility of an image may be automatically determined based, at least in part, on text contained in the image. For example, image analysis techniques may be used to identify text components in an image. One or more features of each text component may be determined for use in assessing the legibility of the text component. For example, a classifier trained on the one or more features may provide a confidence level indicative of the legibility of each text component. The confidence level for each of the text components may be compared to a legibility threshold for determining whether the text component is legible or illegible. Based, at least in part, on the determination as to how much of the text in the image is legible or illegible, an overall legibility of the image may be assessed.
    • 在一些实现中,可以至少部分地基于图像中包含的文本来自动确定图像的可读性。 例如,可以使用图像分析技术来识别图像中的文本分量。 可以确定每个文本组件的一个或多个特征以用于评估文本组件的可读性。 例如,针对一个或多个特征训练的分类器可以提供指示每个文本分量的可读性的置信水平。 可以将每个文本分量的置信水平与用于确定文本分量是否可读或难以辨认的可读性阈值进行比较。 至少部分地基于对图像中的文本多少可读或不清楚的确定,可以评估图像的整体可读性。