会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Embedded optical flow features
    • 嵌入式光流特征
    • US08774499B2
    • 2014-07-08
    • US13405986
    • 2012-02-27
    • Jinjun WangJing Xiao
    • Jinjun WangJing Xiao
    • G06K9/00
    • G06K9/00765G06K9/00335G06K9/6297
    • Aspects of the present invention include systems and methods for generating an optical flow-based feature. In embodiments, to extract an optical flow feature, the optical flow at sparse interest points is obtained, and Locality-constrained Linear Coding (LLC) is applied to the sparse interest points to embed each flow into a higher-dimensional code. In embodiments, for an image frame, the multiple codes are combined together using a weighted pooling that is related to the distribution of the optical flows in the image frame. In embodiments, the feature may be used in training models to detect actions, in trained models for action detection, or both.
    • 本发明的方面包括用于产生基于光流的特征的系统和方法。 在实施例中,为了提取光流特征,获得稀疏兴趣点处的光流,并将局部约束线性编码(LLC)应用于稀疏兴趣点以将每个流嵌入更高维码中。 在实施例中,对于图像帧,使用与图像帧中的光流的分布相关的加权池来将多个代码组合在一起。 在实施例中,可以在训练模型中使用该特征以在用于动作检测的训练模型中或两者中检测动作。
    • 5. 发明授权
    • Continuous linear dynamic systems
    • 连续线性动态系统
    • US08917907B2
    • 2014-12-23
    • US13406011
    • 2012-02-27
    • Jinjun WangJing Xiao
    • Jinjun WangJing Xiao
    • G06K9/00G06K9/62
    • G06K9/00765G06K9/00335G06K9/6297
    • Aspects of the present invention include systems and methods for segmentation and recognition of action primitives. In embodiments, a framework, referred to as the Continuous Linear Dynamic System (CLDS), comprises two sets of Linear Dynamic System (LDS) models, one to model the dynamics of individual primitive actions and the other to model the transitions between actions. In embodiments, the inference process estimates the best decomposition of the whole sequence into continuous alternating between the two set of models, using an approximate Viterbi algorithm. In this way, both action type and action boundary may be accurately recognized.
    • 本发明的方面包括用于分割和识别动作原语的系统和方法。 在实施例中,被称为连续线性动态系统(CLDS)的框架包括两组线性动态系统(LDS)模型,其中一个模型用于对各个原始动作的动力学进行建模,另一组模型对动作之间的转换进行建模。 在实施例中,推理过程使用近似维特比算法来估计整个序列的最佳分解到两组模型之间的连续交替。 以这种方式,可以准确地识别动作类型和动作边界。
    • 6. 发明申请
    • Continuous Linear Dynamic Systems
    • 连续线性动态系统
    • US20120219186A1
    • 2012-08-30
    • US13406011
    • 2012-02-27
    • Jinjun WangJing Xiao
    • Jinjun WangJing Xiao
    • G06K9/62
    • G06K9/00765G06K9/00335G06K9/6297
    • Aspects of the present invention include systems and methods for segmentation and recognition of action primitives. In embodiments, a framework, referred to as the Continuous Linear Dynamic System (CLDS), comprises two sets of Linear Dynamic System (LDS) models, one to model the dynamics of individual primitive actions and the other to model the transitions between actions. In embodiments, the inference process estimates the best decomposition of the whole sequence into continuous alternating between the two set of models, using an approximate Viterbi algorithm. In this way, both action type and action boundary may be accurately recognized.
    • 本发明的方面包括用于分割和识别动作原语的系统和方法。 在实施例中,被称为连续线性动态系统(CLDS)的框架包括两组线性动态系统(LDS)模型,其中一个模型用于对各个原始动作的动力学进行建模,另一组模型对动作之间的转换进行建模。 在实施例中,推理过程使用近似维特比算法来估计整个序列的最佳分解到两组模型之间的连续交替。 以这种方式,可以准确地识别动作类型和动作边界。
    • 8. 发明申请
    • Substructure and Boundary Modeling for Continuous Action Recognition
    • 连续动作识别的子结构和边界建模
    • US20130132316A1
    • 2013-05-23
    • US13491108
    • 2012-06-07
    • Jinjun WangZhaowen WangJing Xiao
    • Jinjun WangZhaowen WangJing Xiao
    • G06N5/02
    • G06N99/005
    • Embodiments of the present invention include systems and methods for improved state space modeling (SSM) comprising two added layers to model the substructure transition dynamics and action duration distribution. In embodiments, the first layer represents a substructure transition model that encodes the sparse and global temporal transition probability. In embodiments, the second layer models the action boundary characteristics by injecting discriminative information into a logistic duration model such that transition boundaries between successive actions can be located more accurately; thus, the second layer exploits discriminative information to discover action boundaries adaptively.
    • 本发明的实施例包括用于改进状态空间建模(SSM)的系统和方法,所述状态空间建模(SSM)包括两个附加的层,以模拟子结构转变动力学和动作持续时间分布。 在实施例中,第一层表示编码稀疏和全局时间转移概率的子结构转换模型。 在实施例中,第二层通过将识别信息注入逻辑持续时间模型来建模动作边界特征,使得可以更准确地定位连续动作之间的转移边界; 因此,第二层利用辨别信息自动发现行动界限。
    • 9. 发明申请
    • Embedded Optical Flow Features
    • 嵌入式光流特性
    • US20120219213A1
    • 2012-08-30
    • US13405986
    • 2012-02-27
    • Jinjun WangJing Xiao
    • Jinjun WangJing Xiao
    • G06K9/48G06K9/62
    • G06K9/00765G06K9/00335G06K9/6297
    • Aspects of the present invention include systems and methods for generating an optical flow-based feature. In embodiments, to extract an optical flow feature, the optical flow at sparse interest points is obtained, and Locality-constrained Linear Coding (LLC) is applied to the sparse interest points to embed each flow into a higher-dimensional code. In embodiments, for an image frame, the multiple codes are combined together using a weighted pooling that is related to the distribution of the optical flows in the image frame. In embodiments, the feature may be used in training models to detect actions, in trained models for action detection, or both.
    • 本发明的方面包括用于产生基于光流的特征的系统和方法。 在实施例中,为了提取光流特征,获得稀疏兴趣点处的光流,并将局部约束线性编码(LLC)应用于稀疏兴趣点以将每个流嵌入更高维码中。 在实施例中,对于图像帧,使用与图像帧中的光流的分布相关的加权池来将多个代码组合在一起。 在实施例中,可以在训练模型中使用该特征以在用于动作检测的训练模型中或两者中检测动作。
    • 10. 发明授权
    • Substructure and boundary modeling for continuous action recognition
    • 连续动作识别的子结构和边界建模
    • US08892491B2
    • 2014-11-18
    • US13491108
    • 2012-06-07
    • Jinjun WangZhaowen WangJing Xiao
    • Jinjun WangZhaowen WangJing Xiao
    • G06N5/02G06T7/20G06N99/00
    • G06N99/005
    • Embodiments of the present invention include systems and methods for improved state space modeling (SSM) comprising two added layers to model the substructure transition dynamics and action duration distribution. In embodiments, the first layer represents a substructure transition model that encodes the sparse and global temporal transition probability. In embodiments, the second layer models the action boundary characteristics by injecting discriminative information into a logistic duration model such that transition boundaries between successive actions can be located more accurately; thus, the second layer exploits discriminative information to discover action boundaries adaptively.
    • 本发明的实施例包括用于改进状态空间建模(SSM)的系统和方法,所述状态空间建模(SSM)包括两个附加层以对子结构转变动力学和动作持续时间分布进行建模。 在实施例中,第一层表示编码稀疏和全局时间转移概率的子结构转换模型。 在实施例中,第二层通过将识别信息注入逻辑持续时间模型来建模动作边界特征,使得可以更准确地定位连续动作之间的转移边界; 因此,第二层利用辨别信息自动发现行动界限。