会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 2. 发明申请
    • SEMI-SUPERVISED RANDOM DECISION FORESTS FOR MACHINE LEARNING
    • 半自动监控机器学习的随机决策林
    • US20130346346A1
    • 2013-12-26
    • US13528876
    • 2012-06-21
    • Antonio CriminisiJamie Daniel Joseph Shotton
    • Antonio CriminisiJamie Daniel Joseph Shotton
    • G06F15/18
    • G06N99/005G06N5/02G06N7/005
    • Semi-supervised random decision forests for machine learning are described, for example, for interactive image segmentation, medical image analysis, and many other applications. In examples, a random decision forest comprising a plurality of hierarchical data structures is trained using both unlabeled and labeled observations. In examples, a training objective is used which seeks to cluster the observations based on the labels and similarity of the observations. In an example, a transducer assigns labels to the unlabeled observations on the basis of the clusters and certainty information. In an example, an inducer forms a generic clustering function by counting examples of class labels at leaves of the trees in the forest. In an example, an active learning module identifies regions in a feature space from which the observations are drawn using the clusters and certainty information; new observations from the identified regions are used to train the random decision forest.
    • 描述了用于机器学习的半监督随机决策树,例如用于交互式图像分割,医学图像分析和许多其他应用。 在示例中,使用未标记和标记的观察来训练包括多个分级数据结构的随机决策林。 在实例中,使用了一个训练目标,其目的是根据观察结果的标签和相似性对观测进行聚类。 在一个示例中,传感器基于集群和确定性信息将标签分配给未标记的观察。 在一个例子中,诱导者通过计算森林中树的树叶上的类标签的示例来形成通用聚类函数。 在一个示例中,主动学习模块识别特征空间中的区域,使用聚类和确定性信息从中绘制观察值; 来自确定地区的新观察用于训练随机决策林。
    • 3. 发明授权
    • Predicting joint positions
    • 预测联合职位
    • US08571263B2
    • 2013-10-29
    • US13050858
    • 2011-03-17
    • Jamie Daniel Joseph ShottonPushmeet KohliRoss Brook GirshickAndrew FitzgibbonAntonio Criminisi
    • Jamie Daniel Joseph ShottonPushmeet KohliRoss Brook GirshickAndrew FitzgibbonAntonio Criminisi
    • G06K9/00
    • G06F3/017G06K9/00362G06N5/025
    • Predicting joint positions is described, for example, to find joint positions of humans or animals (or parts thereof) in an image to control a computer game or for other applications. In an embodiment image elements of a depth image make joint position votes so that for example, an image element depicting part of a torso may vote for a position of a neck joint, a left knee joint and a right knee joint. A random decision forest may be trained to enable image elements to vote for the positions of one or more joints and the training process may use training images of bodies with specified joint positions. In an example a joint position vote is expressed as a vector representing a distance and a direction of a joint position from an image element making the vote. The random decision forest may be trained using a mixture of objectives.
    • 例如,描述关节位置的描述是为了在图像中找到人或动物(或其部分)的联合位置,以控制计算机游戏或用于其他应用。 在一个实施例中,深度图像的图像元素进行联合位置投票,使得例如描绘躯干的一部分的图像元素可以投射颈部关节,左膝关节和右膝关节的位置。 可以对随机决策林进行训练,以使图像元素能够对一个或多个关节的位置进行投票,并且训练过程可以使用具有指定关节位置的身体的训练图像。 在一个例子中,联合立场表决被表示为表示从投票的图像元素的联合位置的距离和方向的向量。 可以使用目标混合来训练随机决策林。
    • 6. 发明申请
    • Automatic Identification of Image Features
    • 图像特征的自动识别
    • US20110188715A1
    • 2011-08-04
    • US12697785
    • 2010-02-01
    • Jamie Daniel Joseph ShottonAntonio Criminisi
    • Jamie Daniel Joseph ShottonAntonio Criminisi
    • G06K9/00
    • G06K9/00G06K9/6282G06K2209/051G06T7/0012
    • Automatic identification of image features is described. In an embodiment, a device automatically identifies organs in a medical image using a decision forest formed of a plurality of distinct, trained decision trees. An image element from the image is applied to each of the trained decision trees to obtain a probability of the image element representing a predefined class of organ. The probabilities from each of the decision trees are aggregated and used to assign an organ classification to the image element. In another embodiment, a method of training a decision tree to identify features in an image is provided. For a selected node in the decision tree, a training image is analyzed at a plurality of locations offset from a selected image element, and one of the offsets is selected based on the results of the analysis and stored in association with the node.
    • 描述图像特征的自动识别。 在一个实施例中,设备使用由多个不同的训练有素的决策树形成的决策树,自动识别医学图像中的器官。 将来自图像的图像元素应用于每个经训练的决策树,以获得表示预定类别器官的图像元素的概率。 来自每个决策树的概率被聚合并用于将分类器官分类给图像元素。 在另一个实施例中,提供了一种训练决策树以识别图像中的特征的方法。 对于决策树中的选定节点,在与所选择的图像元素偏移的多个位置处分析训练图像,并且基于分析的结果来选择偏移中的一个,并且与节点相关联地存储。
    • 7. 发明授权
    • Density estimation and/or manifold learning
    • 密度估计和/或歧管学习
    • US08954365B2
    • 2015-02-10
    • US13528866
    • 2012-06-21
    • Antonio CriminisiJamie Daniel Joseph ShottonEnder Konukoglu
    • Antonio CriminisiJamie Daniel Joseph ShottonEnder Konukoglu
    • G06F17/00G06K9/62
    • G06K9/6232G06K9/6219G06K9/6226G06K9/6252
    • Density estimation and/or manifold learning are described, for example, for computer vision, medical image analysis, text document clustering. In various embodiments a density forest is trained using unlabeled data to estimate the data distribution. In embodiments the density forest comprises a plurality of random decision trees each accumulating portions of the training data into clusters at their leaves. In embodiments probability distributions representing the clusters at each tree are aggregated to form a forest density which is an estimate of a probability density function from which the unlabeled data may be generated. A mapping engine may use the clusters at the leaves of the density forest to estimate a mapping function which maps the unlabeled data to a lower dimensional space whilst preserving relative distances or other relationships between the unlabeled data points. A sampling engine may use the density forest to randomly sample data from the forest density.
    • 例如,对于计算机视觉,医学图像分析,文本文档聚类来描述密度估计和/或歧管学习。 在各种实施例中,使用未标记的数据来训练密度森林以估计数据分布。 在实施例中,密度森林包括多个随机决策树,每个随机决策树将训练数据的部分在其叶片上聚集成簇。 在实施例中,表示每个树上的聚类的概率分布被聚合以形成森林密度,森林密度是可以从其生成未标记数据的概率密度函数的估计。 映射引擎可以使用密度森林叶片处的簇来估计将未标记数据映射到较低维空间的映射函数,同时保留未标记数据点之间的相对距离或其他关系。 采样引擎可以使用密度森林来从森林密度随机抽取数据。
    • 9. 发明申请
    • DENSITY ESTIMATION AND/OR MANIFOLD LEARNING
    • 密度估算和/或差异学习
    • US20130343619A1
    • 2013-12-26
    • US13528866
    • 2012-06-21
    • Antonio CriminisiJamie Daniel Joseph ShottonEnder Konukoglu
    • Antonio CriminisiJamie Daniel Joseph ShottonEnder Konukoglu
    • G06K9/62
    • G06K9/6232G06K9/6219G06K9/6226G06K9/6252
    • Density estimation and/or manifold learning are described, for example, for computer vision, medical image analysis, text document clustering. In various embodiments a density forest is trained using unlabeled data to estimate the data distribution. In embodiments the density forest comprises a plurality of random decision trees each accumulating portions of the training data into clusters at their leaves. In embodiments probability distributions representing the clusters at each tree are aggregated to form a forest density which is an estimate of a probability density function from which the unlabeled data may be generated. A mapping engine may use the clusters at the leaves of the density forest to estimate a mapping function which maps the unlabeled data to a lower dimensional space whilst preserving relative distances or other relationships between the unlabeled data points. A sampling engine may use the density forest to randomly sample data from the forest density.
    • 例如,对于计算机视觉,医学图像分析,文本文档聚类来描述密度估计和/或歧管学习。 在各种实施例中,使用未标记的数据来训练密度森林以估计数据分布。 在实施例中,密度森林包括多个随机决策树,每个随机决策树将训练数据的部分在其叶片上累积成簇。 在实施例中,表示每个树上的聚类的概率分布被聚合以形成森林密度,森林密度是可以从其生成未标记数据的概率密度函数的估计。 映射引擎可以使用密度森林叶片处的簇来估计将未标记数据映射到较低维空间的映射函数,同时保留未标记数据点之间的相对距离或其他关系。 采样引擎可以使用密度森林来从森林密度随机抽取数据。