会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 3. 发明申请
    • Returns-Timing for Multiple Market Factor Risk Models
    • 多个市场因素风险模型的回报 - 时间
    • US20130080310A1
    • 2013-03-28
    • US13503696
    • 2011-05-19
    • Simon Wannasin BellStefan Hans SchmietaFrank Pak-Ho Siu
    • Simon Wannasin BellStefan Hans SchmietaFrank Pak-Ho Siu
    • G06Q40/04
    • G06Q40/06G06Q40/08
    • Until recently, risk models have been built using low frequency data, such as weekly or monthly data. This approach has resulted in a necessary compromise between model stability for which one needs a long history of data, and model responsiveness, for which, the shorter the history, the better. Stability plus responsiveness can be achieved if one uses daily data, which allows for a large number of observations to be used in model estimation without using long out-of-date data. Daily data have other problems, however, as the differing closing times of markets worldwide may induce spurious relationships across model factors. In particular, correlations between markets may appear lower than they truly are due to a market lag To address such issues, a stable, daily data-based factor risk model is described which takes account of the differing market closing times and corrects the model factor correlations and specific returns accordingly.
    • 直到最近,已经使用低频数据(例如每周或每月数据)构建风险模型。 这种方法导致了模型稳定性之间的必要妥协,人们需要长期的数据历史和模型响应能力,历史越短越好。 如果使用日常数据,可以实现稳定性和响应能力,这样可以在不使用长期过期数据的情况下,将大量观测数据用于模型估计。 然而,每日数据还有其他问题,因为全球市场的不同关闭时间可能会导致模型因素之间的虚假关系。 特别地,市场之间的相关性可能比真正由于市场滞后而显得低。为了解决这些问题,描述了稳定的基于数据的每日因素风险模型,其考虑到不同的市场收盘时间并且校正模型因素相关性 并据此具体回报。
    • 6. 发明授权
    • Returns-timing for multiple market factor risk models
    • 多个市场因素风险模型的回报 - 时间
    • US08533107B2
    • 2013-09-10
    • US13503696
    • 2011-05-19
    • Simon Wannasin BellStefan Hans SchmietaFrank Pak-Ho Siu
    • Simon Wannasin BellStefan Hans SchmietaFrank Pak-Ho Siu
    • G06Q40/00
    • G06Q40/06G06Q40/08
    • Until recently, risk models have been built using low frequency data, such as weekly or monthly data. This approach has resulted in a necessary compromise between model stability for which one needs a long history of data, and model responsiveness, for which, the shorter the history, the better. Stability plus responsiveness can be achieved if one uses daily data, which allows for a large number of observations to be used in model estimation without using long out-of-date data. Daily data have other problems, however, as the differing closing times of markets worldwide may induce spurious relationships across model factors. In particular, correlations between markets may appear lower than they truly are due to a market lag effect. To address such issues, a stable, daily data-based factor risk model is described which takes account of the differing market closing times and corrects the model factor correlations and specific returns accordingly.
    • 直到最近,已经使用低频数据(例如每周或每月数据)构建风险模型。 这种方法导致了模型稳定性之间的必要妥协,人们需要长期的数据历史和模型响应能力,历史越短越好。 如果使用日常数据,可以实现稳定性和响应能力,这样可以在不使用长期过期数据的情况下,将大量观测数据用于模型估计。 然而,每日数据还有其他问题,因为全球市场的不同关闭时间可能会导致模型因素之间的虚假关系。 特别地,市场之间的相关性可能看起来比真正由于市场滞后效应低。 为了解决这些问题,描述了一个稳定的基于日常数据的因素风险模型,其中考虑到不同的市场收盘时间,并相应地纠正模型因素相关性和具体回报。