会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Half-cycle summation V/Hz relay for generator and transformer
over-excitation protection
    • 用于发电机和变压器过励磁保护的半周期求和V / Hz继电器
    • US5805395A
    • 1998-09-08
    • US766715
    • 1996-12-13
    • Yi HuDavid HartDamir NovoselRobert Smith
    • Yi HuDavid HartDamir NovoselRobert Smith
    • H02H7/04H02H7/06
    • H02H7/04H02H7/06
    • A system for implementing accurate V/Hz value measurement and trip time determination for generator/transformer overexcitation protection independent of the conventional frequency tracking and phasor estimation based on Discrete Fourier Transformation (DFT) techniques. The half-cycle summation technique of the invention is a non-recursive digital technique which measures the per unit V/Hz value by summing the sampled data points in every half cycle of a sinusoidal input signal and dividing the sum with the ideal base sum value. When the input voltage signal is sampled at a reasonable frequency, the technique of the invention approximates the accurate per unit V/Hz value of the input voltage signal and thus obtains an accurate V/Hz characteristic directly without computing voltage and frequency separately.
    • 一种用于实现发电机/变压器过励磁保护的精确V / Hz值测量和跳闸时间确定的系统,与传统的基于离散傅里叶变换(DFT)技术的频率跟踪和相量估计无关。 本发明的半周期求和技术是一种非递归数字技术,其通过将正弦输入信号的每半个周期中的采样数据点相加并且将和除以理想基本和值来测量每单位V / Hz值 。 当以合理的频率对输入电压信号进行采样时,本发明的技术近似于输入电压信号的每单位V / Hz值的准确度,从而直接获得精确的V / Hz特性,而不分别计算电压和频率。
    • 2. 发明授权
    • Digital integrator V/Hz relay for generator and transformer
over-excitation protection
    • 用于发电机和变压器过励磁保护的数字积分器V / Hz继电器
    • US5671112A
    • 1997-09-23
    • US647589
    • 1996-05-13
    • Yi HuDavid HartDamir NovoselRobert Smith
    • Yi HuDavid HartDamir NovoselRobert Smith
    • G01R19/04H02H7/04H02H3/18
    • H02H7/04G01R19/04
    • A system for implementing accurate V/Hz value measurement and trip time determination for generator/transformer overexcitation protection independent of the conventional frequency tracking and phasor estimation based on Discrete Fourier Transformation (DFT) techniques. A sampled sinusoidal voltage signal is passed through a digital integrator and the magnitude of the digital integrator's output is measured as representative of the V/Hz ratio. The digital integrator is implemented in software using a difference equation in a generator protection unit. The technique may be used with either a fixed or a variable sampling frequency. When the sampling frequency is variable, the filter coefficients of the digital integrator are recalculated on-line each time the sampling frequency is changed, and a new value for the peak magnitude of the output of the digital integrator is calculated using the recalculated filter coefficients. Non-linear frequency response characteristics of the voltage sensors and non-ideal characteristics of the digital integrator are also adjusted using the measured frequency and error-frequency characteristics of the particular digital integrator and voltage sensors used.
    • 一种用于实现发电机/变压器过励磁保护的精确V / Hz值测量和跳闸时间确定的系统,与传统的基于离散傅里叶变换(DFT)技术的频率跟踪和相量估计无关。 采样的正弦电压信号通过数字积分器,并且数字积分器的输出的幅度被测量为代表V / Hz比。 数字积分器采用发电机保护单元中的差分方程软件实现。 该技术可以与固定或可变采样频率一起使用。 当采样频率可变时,每次采样频率改变时,数字积分器的滤波器系数在线重新计算,并且使用重新计算的滤波器系数计算数字积分器的输出的峰值幅度的新值。 电压传感器的非线性频率响应特性和数字积分器的非理想特性也使用所使用的特定数字积分器和电压传感器的测量频率和误差频率特性进行调整。
    • 3. 发明授权
    • System and method for phasor estimation and frequency tracking in
digital protection systems
    • 数字保护系统中相量估计和频率跟踪的系统和方法
    • US5721689A
    • 1998-02-24
    • US574357
    • 1995-12-18
    • David HartYi HuDamir NovoselRobert Smith
    • David HartYi HuDamir NovoselRobert Smith
    • G01R19/25G01R23/00G01R23/16G01R23/10H03M1/00
    • G01R23/16G01R19/2513G01R23/00
    • A method and system for estimating phasors and tracking the frequency of a signal is provided. The method uses a variable N-point DFT to compute one or more phasors based on data acquired from one or more sampled signals. At each sampling interval the change in phasor angle between the current sampling interval and the previous sampling interval is determined and used to estimate the instantaneous frequency of the signal. Instantaneous frequencies are averaged over a cycle of the signal. In addition, a number of discrete frequencies and corresponding DFT windows based on a fixed sampling rate and a predetermined fundamental frequency of the signal are defined and used in estimating the instantaneous frequency. Once the average cycle frequency is determined the DFT window is adjusted by setting it equal to the DFT window corresponding to the discrete frequency closest to the average cycle frequency.
    • 提供了一种用于估计相量并跟踪信号频率的方法和系统。 该方法使用可变N点DFT来基于从一个或多个采样信号获取的数据来计算一个或多个相量。 在每个采样间隔,确定当前采样间隔和先前采样间隔之间的相量角的变化,并用于估计信号的瞬时频率。 瞬时频率在信号的周期上平均。 另外,基于固定采样率和信号的预定基频定义了多个离散频率和相应的DFT窗口,并用于估计瞬时频率。 一旦确定平均周期频率,则通过将DFT窗口设置为等于最接近平均周期频率的离散频率的DFT窗口来调整DFT窗口。
    • 4. 发明授权
    • System for locating faults and estimating fault resistance in
distribution networks with tapped loads
    • 用于定位故障和估计具有轻敲负载的配电网络中的故障阻力的系统
    • US5839093A
    • 1998-11-17
    • US777623
    • 1996-12-31
    • Damir NovoselDavid HartYi HuJorma Myllymaki
    • Damir NovoselDavid HartYi HuJorma Myllymaki
    • G01R31/08H02H3/26
    • G01R31/086
    • Both fault location and fault resistance of a fault are calculated by the present method and system. The method and system takes into account the effects of fault resistance and load flow, thereby calculating fault resistance by taking into consideration the current flowing through the distribution network as well as the effect of fault impedance. A direct method calculates fault location and fault resistance directly while an iterative fashion method utilizes simpler calculations in an iterative fashion which first assumes that the phase angle of the current distribution factor D.sub.s is zero, calculates an estimate of fault location utilizing this assumption, and then iteratively calculates a new value of the phase angle .beta..sub.s of the current distribution factor D.sub.s and fault location m until a sufficiently accurate determination of fault location is ascertained. Fault resistance is then calculated based upon the calculated fault location. The techniques are equally applicable to a three-phase system once fault type is identified.
    • 通过本方法和系统计算故障位置和故障故障电阻。 该方法和系统考虑了故障电阻和负载流量的影响,从而通过考虑流经配电网络的电流以及故障阻抗的影响来计算故障电阻。 直接方法直接计算故障位置和故障电阻,而迭代方法以迭代方式利用更简单的计算,首先假设电流分布因子Ds的相位角为零,使用该假设计算故障位置的估计,然后 迭代地计算当前分布因子Ds和故障位置m的相位角βs的新值,直到确定故障位置的足够精确的确定。 然后根据计算出的故障位置计算故障电阻。 一旦发现故障类型,这些技术同样适用于三相系统。
    • 5. 发明授权
    • Systems and methods for locating faults on a transmission line with a single tapped load
    • 用单个抽头负载定位传输线上的故障的系统和方法
    • US06466030B2
    • 2002-10-15
    • US09752382
    • 2000-12-29
    • Yi HuDavid LubkemanReto BuettnerDavid Hart
    • Yi HuDavid LubkemanReto BuettnerDavid Hart
    • G01R3108
    • G01R31/085G01R31/08
    • A fault is located in a transmission line with a sending end, a receiving end, and a tapped load connected to the transmission line at a tap node. The tap node divides the transmission line into a sending side and a receiving side. The sending end and the receiving end each include a measuring device. The fault location is determined by obtaining measured circuit parameters including measured pre-fault and faulted current and voltage values at the sending end and at the receiving end of the transmission line. The phase angle difference due to unsynchronized measurement using the measured pre-fault current and the measured pre-fault voltage values may be calculated. The load impedance of the tapped load is calculated. A first fault location is calculated assuming that the fault is located on the sending side of the tap node. A second fault location is calculated assuming that the fault is located on the receiving side of the tap node. The fault location is selected from one of the first fault location and the second fault location, by selecting the fault location having a value within a predetermined range representing a full distance between two nodes.
    • 故障位于传输线上,发送端,接收端和连接到分接节点处的传输线的抽头负载。 分接节点将传输线划分为发送侧和接收侧。 发送端和接收端各自包括测量装置。 通过获得测量的电路参数来确定故障位置,该电路参数包括传输线的发送端和接收端的测量故障前和故障电流和电压值。 可以计算使用测量的故障前电流和测量的故障前电压值的不同步测量的相位角差。 计算抽头载荷的负载阻抗。 假设故障位于分接节点的发送侧,则计算第一故障位置。 假设故障位于分接节点的接收侧,则计算第二个故障位置。 通过选择具有表示两个节点之间的全距离的预定范围内的值的故障位置,从第一故障位置和第二故障位置中选择故障位置。
    • 6. 发明授权
    • Systems and methods for locating faults on a transmission line with multiple tapped loads
    • 用于定位具有多个轻敲负载的传输线上的故障的系统和方法
    • US06466031B1
    • 2002-10-15
    • US09752892
    • 2000-12-29
    • Yi HuDavid LubkemanReto BuettnerDavid Hart
    • Yi HuDavid LubkemanReto BuettnerDavid Hart
    • G01R3108
    • G01R31/085
    • A fault is located in a transmission line with a sending end, a receiving end, and a plurality of tapped nodes, and multiple tapped loads connected to the transmission line at tap nodes. The sending end and the receiving end each include a measuring device. The fault location is determined by obtaining measured circuit parameters including measured pre-fault and faulted current and voltage values at the sending end and at the receiving end of the transmission line. An equivalent tap node location is calculated using measured pre-fault and faulted current and voltage values at the sending end and at the receiving end of the transmission line. The equivalent tap node divides the transmission line into a sending side and a receiving side. The phase angle difference due to unsynchronized measurement using the measured pre-fault current and the measured pre-fault voltage values may be calculated. The equivalent load impedance of the tapped loads is calculated. A first fault location is calculated assuming that the fault is located on the sending side of the equivalent tap node. A second fault location is calculated assuming that the fault is located on the receiving side of the equivalent tap node. The fault location is selected from one of the first fault location and the second fault location, by selecting the fault location having a value within a predetermined range representing a full distance between two nodes.
    • 故障位于具有发送端,接收端和多个抽头节点的传输线中,并且在分接节点处连接到传输线的多个抽头负载。 发送端和接收端各自包括测量装置。 通过获得测量的电路参数来确定故障位置,该电路参数包括传输线的发送端和接收端的测量故障前和故障电流和电压值。 使用发送端和传输线接收端的测量故障前和故障电流和电压值计算等效抽头节点位置。 等效抽头节点将传输线划分为发送侧和接收端。 可以计算使用测量的故障前电流和测量的故障前电压值的不同步测量的相位角差。 计算抽头负载的等效负载阻抗。 假设故障位于等效抽头节点的发送侧,则计算第一个故障位置。 假定故障位于等效抽头节点的接收侧,则计算第二个故障位置。 通过选择具有表示两个节点之间的全距离的预定范围内的值的故障位置,从第一故障位置和第二故障位置中选择故障位置。
    • 9. 发明申请
    • Planarization Methods
    • 平面化方法
    • US20100005654A1
    • 2010-01-14
    • US12172079
    • 2008-07-11
    • David HartDavid McDonaldGuillaume BoucheSudarsan Uppili
    • David HartDavid McDonaldGuillaume BoucheSudarsan Uppili
    • H05K3/02
    • H03H3/02H03H9/175H03H9/584H03H9/589H03H2003/025Y10T29/42Y10T29/49128Y10T29/4913Y10T29/49155Y10T29/49156Y10T29/49165
    • Planarization methods for maintaining planar surfaces in the fabrication of such devices as BAW devices and capacitors on a planar or planarized substrate are described. In accordance with the method, a metal layer is deposited and patterned, and an oxide layer is deposited using a high density plasma chemical vapor deposition (HDP CVD) process to a thickness equal to the thickness of the metal layer. The HDP CVD process provides an oxide layer on the patterned metal tapering upward from the edge of the patterned metal layer. Then, after masking and etching the oxide layer from the patterned metal layer, the patterned metal layer and surrounding oxide layer form a substantially planar layer, interrupted by small remaining oxide protrusions at the edges of the patterned layer. These small remaining oxide protrusions may be too small to significantly disturb the flatness of a further oxide or other layer or they may be further mitigated by the application of another HDP CVD oxide film.
    • 描述了在平面或平面化基板上制造诸如BAW器件和电容器之类的器件的平面表面的平面化方法。 根据该方法,沉积和图案化金属层,并且使用高密度等离子体化学气相沉积(HDP CVD)工艺将氧化物层沉积到等于金属层厚度的厚度。 HDP CVD工艺在图案化金属的图案化金属层的边缘上向上逐渐变细的氧化层。 然后,在从图案化的金属层掩蔽和蚀刻氧化物层之后,图案化的金属层和周围的氧化物层形成基本平坦的层,被图案化层的边缘处的小的剩余的氧化物突起中断。 这些小的剩余氧化物突起可能太小而不能显着地扰乱另外的氧化物或其它层的平坦度,或者可以通过施加另一HDP CVD氧化物膜进一步减轻它们。