会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 2. 发明授权
    • Privacy-preserving probabilistic inference based on hidden Markov models
    • 基于隐马尔可夫模型的隐私保护概率推理
    • US08433892B2
    • 2013-04-30
    • US13076410
    • 2011-03-30
    • Shantanu RaneWei SunManas A. PathakBhiksha Raj
    • Shantanu RaneWei SunManas A. PathakBhiksha Raj
    • H04L29/06
    • H04L9/008G06N7/005H04L2209/46
    • A probability of an observation sequence stored at a client is evaluated securely with respect to a hidden Markov model (HMM) stored at a server. The server determines, for each state of the HMM, an encryption of a log-probability of a current element of the observation sequence. Determines, for each state of the HMM, an encryption of a log-summation of a product of a likelihood of the observation sequence based on a previous element of the observation sequence and a transition probability to the state of the HMM. Determines an encryption of a log-likelihood of the observation sequence for each state as a product of the encryption of a log-summation and an encryption of a corresponding log-probability of the current element of the observation sequence; and determines an encryption of the log-probability of the observation sequence based on the log-likelihood of the observation sequence for each state.
    • 相对于存储在服务器中的隐马尔可夫模型(HMM),安全地评估存储在客户端的观察序列的概率。 对于HMM的每个状态,服务器确定观察序列的当前元素的对数概率的加密。 确定对于HMM的每个状态,基于观测序列的先前元素和HMM状态的转移概率,对观测序列的可能性的乘积的对数加和进行加密。 确定每个状态的观察序列的对数似然度的加密,作为对数求和的加密和观察序列的当前元素的相应对数概率的加密的乘积; 并且基于每个状态的观察序列的对数似然度来确定观察序列的对数概率的加密。
    • 3. 发明申请
    • Privacy-Preserving Probabilistic Inference Based on Hidden Markov Models
    • 基于隐马尔可夫模型的隐私保护概率推理
    • US20120254612A1
    • 2012-10-04
    • US13076410
    • 2011-03-30
    • Shantanu RaneWei SunManas A. PathakBhiksha Raj
    • Shantanu RaneWei SunManas A. PathakBhiksha Raj
    • G06N5/02H04L9/32
    • H04L9/008G06N7/005H04L2209/46
    • A probability of an observation sequence stored at a client is evaluated securely with respect to a hidden Markov model (HMM) stored at a server. The server determines, for each state of the HMM, an encryption of a log-probability of a current element of the observation sequence. Determines, for each state of the HMM, an encryption of a log-summation of a product of a likelihood of the observation sequence based on a previous element of the observation sequence and a transition probability to the state of the HMM. Determines an encryption of a log-likelihood of the observation sequence for each state as a product of the encryption of a log-summation and an encryption of a corresponding log-probability of the current element of the observation sequence; and determines an encryption of the log-probability of the observation sequence based on the log-likelihood of the observation sequence for each state.
    • 相对于存储在服务器中的隐马尔可夫模型(HMM),安全地评估存储在客户端的观察序列的概率。 对于HMM的每个状态,服务器确定观察序列的当前元素的对数概率的加密。 确定对于HMM的每个状态,基于观测序列的先前元素和HMM状态的转移概率,对观测序列的可能性的乘积的对数加和进行加密。 确定每个状态的观察序列的对数似然度的加密,作为对数求和的加密和观察序列的当前元素的相应对数概率的加密的乘积; 并且基于每个状态的观察序列的对数似然度来确定观察序列的对数概率的加密。