会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Method and apparatus for multi-stage adaptive volume control
    • 多级自适应音量控制的方法和装置
    • US09099972B2
    • 2015-08-04
    • US13509619
    • 2012-03-13
    • Yi GaoJames D. BarrusWilliam M. KushnerYu LiuLi Xiao
    • Yi GaoJames D. BarrusWilliam M. KushnerYu LiuLi Xiao
    • H03G3/00H03G3/20H04M1/60
    • H03G3/20H04M1/6041
    • A method and apparatus for adaptively controlling the audio output (122) of a communication device (114) according to the noise characteristics of the receiver listening environment (119). An output volume for the communication device (114) is set by a user (e.g., listener 118). The communication device (114) can intermittently sample ambient noise (116) of its environment (119). A minimum signal to noise threshold can be established for audio output (122). A total adjustment for the audio output (122) is established based on the ambient noise (116), the user set output volume, and the minimum signal to noise threshold. The total adjustment is a product of a software volume adjustment (230) and a hardware gain adjustment (240). The software volume adjustment (230) and the hardware gain adjustment (240) is adaptively applied when the communication device (114) outputs audio (122).
    • 一种用于根据接收机收听环境(119)的噪声特性自适应地控制通信设备(114)的音频输出(122)的方法和装置。 通信设备(114)的输出音量由用户(例如,听众118)设置。 通信设备(114)可以间歇地对其环境(119)的环境噪声(116)进行采样。 可以为音频输出(122)建立最小信号噪声阈值。 基于环境噪声(116),用户设定输出音量和最小信号噪声阈值来建立音频输出(122)的总体调整。 总体调整是软件音量调整(230)和硬件增益调整(240)的产物。 当通信设备(114)输出音频(122)时,自适应地应用软件音量调节(230)和硬件增益调整(240)。
    • 2. 发明申请
    • METHOD AND APPARATUS FOR MULTI-STAGE ADAPTIVE VOLUME CONTROL
    • 用于多级自适应体积控制的方法和装置
    • US20150016633A1
    • 2015-01-15
    • US13509619
    • 2012-03-13
    • Yi GaoJames D. BarrusWilliam M. KushnerYu LiuLi Xiao
    • Yi GaoJames D. BarrusWilliam M. KushnerYu LiuLi Xiao
    • H03G3/20
    • H03G3/20H04M1/6041
    • A method and apparatus for adaptively controlling the audio output (122) of a communication device (114) according to the noise characteristics of the receiver listening environment (119). An output volume for the communication device (114) is set by a user (e.g., listener 118). The communication device (114) can intermittently sample ambient noise (116) of its environment (119). A minimum signal to noise threshold can be established for audio output (122). A total adjustment for the audio output (122) is established based on the ambient noise (116), the user set output volume, and the minimum signal to noise threshold. The total adjustment is a product of a software volume adjustment (230) and a hardware gain adjustment (240). The software volume adjustment (230) and the hardware gain adjustment (240) is adaptively applied when the communication device (114) outputs audio (122).
    • 一种用于根据接收机收听环境(119)的噪声特性自适应地控制通信设备(114)的音频输出(122)的方法和装置。 通信设备(114)的输出音量由用户(例如,听众118)设置。 通信设备(114)可以间歇地对其环境(119)的环境噪声(116)进行采样。 可以为音频输出(122)建立最小信号噪声阈值。 基于环境噪声(116),用户设定输出音量和最小信号噪声阈值来建立音频输出(122)的总体调整。 总体调整是软件音量调整(230)和硬件增益调整(240)的产物。 当通信设备(114)输出音频(122)时,自适应地应用软件音量调节(230)和硬件增益调整(240)。
    • 5. 发明授权
    • Method, apparatus, and radio optimizing Hidden Markov Model speech
recognition
    • 方法,设备和无线电优化隐马尔可夫模型语音识别
    • US5617509A
    • 1997-04-01
    • US413146
    • 1995-03-29
    • William M. KushnerEdward SrengerMatthew A. Hartman
    • William M. KushnerEdward SrengerMatthew A. Hartman
    • G10L15/14G10L9/00
    • G10L15/142
    • In a statistical based speech recognition system, one of the key issues is the selection of the Hidden Markov Model that best matches a given sequence of feature observations. The problem is usually addressed by the calculation of the maximum likelihood, ML, state sequence by means of a Viterbi or other decoder. Noise or inadequate training can produce a ML sequence associated with a Hidden Markov Model other than the correct model. The method of the present invention provides improved robustness by combining the standard ML state sequence score (416) with an additional path score (418) derived from the dynamics of the ML score as a function of time. These two scores, when combined, form a hybrid metric (420) that, when used with the decoder, optimizes selection of the correct Hidden Markov Model (422).
    • 在基于统计的语音识别系统中,关键问题之一是选择与给定的特征观测序列最匹配的隐马尔可夫模型。 通常通过维特比或其他解码器的最大似然度ML,状态序列的计算来解决该问题。 噪音或训练不足可以产生与正确模型以外的隐马尔可夫模型相关的ML序列。 本发明的方法通过将标准ML状态序列得分(416)与作为时间的函数的ML得分的动力学导出的附加路径得分(418)组合来提供改进的鲁棒性。 当组合时,这两个分数形成混合度量(420),当与解码器一起使用时,优化选择正确的隐马尔可夫模型(422)。
    • 10. 发明授权
    • Communication device and method for endpointing speech utterances
    • 用于终止语音语音的通信设备和方法
    • US06321197B1
    • 2001-11-20
    • US09235952
    • 1999-01-22
    • William M. KushnerAudrius Polikaitis
    • William M. KushnerAudrius Polikaitis
    • G10L1504
    • G10L25/87
    • A communication device capable of endpointing speech utterances includes a microprocessor (110) connected to communication interface circuitry (115), memory (120), audio circuitry (130), an optional keypad (140), a display (150), and a vibrator/buzzer (160). Audio circuitry (130) is connected to microphone (133) and speaker (135). Microprocessor (110) includes a speech/noise classifier and speech recognition technology. Microprocessor (110) analyzes a speech signal to determine speech waveform parameters within a speech acquisition window. Microprocessor (110) compares the speech waveform parameters to determine the start and end points of the speech utterance. Microprocessor (110) starts at a frame index based on the energy centroid of the speech utterance and analyzes the frames preceding and following the frame index to determine the endpoints. When a potential endpoint is identified, microprocessor (110) compares the cumulative energy to the total energy of the speech acquisition window to determine whether additional speech frames are present. Accordingly, gaps and pauses in the utterance will not result in an erroneous endpoint determination.
    • 能够终止语音话语的通信设备包括连接到通信接口电路(115),存储器(120),音频电路(130),可选小键盘(140),显示器(150)和振动器 /蜂鸣器(160)。 音频电路(130)连接到麦克风(133)和扬声器(135)。 微处理器(110)包括语音/噪声分类器和语音识别技术。 微处理器(110)分析语音信号以确定语音采集窗口内的语音波形参数。 微处理器(110)比较语音波形参数以确定语音话语的开始和结束点。 微处理器(110)基于语音话音的能量中心以帧索引开始,并且分析帧索引之前和之后的帧以确定端点。 当识别出潜在端点时,微处理器(110)将累积能量与语音获取窗口的总能量进行比较,以确定是否存在附加语音帧。 因此,话语中的间隙和暂停不会导致错误的端点确定。