会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明申请
    • Imaging methods, apparatus, systems, media and signals
    • 成像方法,装置,系统,媒体和信号
    • US20070098298A1
    • 2007-05-03
    • US11591616
    • 2006-11-02
    • Qing-San Xiang
    • Qing-San Xiang
    • G06K9/36G06K9/00
    • G01R33/485G01R33/4828G01R33/5602
    • Methods, apparatus, computer-readable media and signals for imaging are disclosed. A method includes performing a phasor iteration process to identify a phase error phasor associated with: a first input image data set representing a first image of an object having at least a first component and a second component, and a second input image data set representing a second image of the object. The method further includes generating a first output image data set representing an image of the first component of the object, in response to the first and second input image data sets and the phase error phasor. The first and second components of the object may include first and second chemical components.
    • 公开了用于成像的方法,装置,计算机可读介质和信号。 一种方法包括执行相量迭代过程以识别与以下相关联的相位误差相量:表示具有至少第一分量和第二分量的对象的第一图像的第一输入图像数据集,以及表示第一输入图像数据集 对象的第二个图像。 该方法还包括响应于第一和第二输入图像数据集和相位误差相量,生成表示对象的第一分量的图像的第一输出图像数据集。 物体的第一和第二成分可以包括第一和第二化学成分。
    • 2. 发明申请
    • Ergodynamic desktop
    • 动态桌面
    • US20060124036A1
    • 2006-06-15
    • US11261391
    • 2005-10-28
    • Bing XuQing-san Xiang
    • Bing XuQing-san Xiang
    • A47B85/00
    • A47B21/0314
    • A novel concept of ergodynamic desktops with slowly varying configurations for ergonomic purposes is provided. Very slow motions are incorporated into the design of desktops, usually used by computer users. The introduced motion is at such a slow pace that it is hardly noticeable, similar to the adiabatic motions of hour or minute hands on a clock. Users of the desktops are therefore induced to adjust their body posture accordingly in a gradual and healthy manner, while still continuing to perform their normal activities without interruption. These desktop designs allow a natural and effortless combination of normal life and exercise. When used in a working environment, they will be useful to improve the health and to enhance the efficiency of workers.
    • 提供了具有人体工程学目的的缓慢变化配置的智能桌面的新颖概念。 非常慢的动作被并入台式机的设计,通常由计算机用户使用。 引入的动议是一个如此缓慢的步伐,它几乎不显眼,类似于时钟或时钟的绝对动作。 因此,台式电脑的使用者因而逐渐健康地调整身体姿势,同时继续不间断地进行正常的活动。 这些桌面设计允许正常生活和锻炼的自然而轻松的组合。 在工作环境中使用时,对于提高健康水平和提高工作效率,有用。
    • 3. 发明授权
    • Water-fat imaging with direct phase encoding (DPE)
    • 具有直接相位编码(DPE)的水脂成像
    • US06091243A
    • 2000-07-18
    • US191828
    • 1998-11-13
    • Qing-San XiangLi An
    • Qing-San XiangLi An
    • G01R33/54G01V3/00
    • G01R33/4828
    • A method acquires three complex images, wherein their respective phase differences between water and fat components are .alpha..sub.0, .alpha..sub.0 +.alpha., and .alpha..sub.0 +2.alpha., respectively. The method obtains from these three complex images two possible solution sets for water and fat images. For pixels with both water and fat components, one correct solution set is selected using a binary choice based on the relative Larmor frequencies of water and fat. If a pixel contains only one component, a known statistical bias is applied to identify the component and, thus, the pixel. To correct misidentified pixels, various filters may be applied to all the pixels. The water and fat solutions obtained from the three complex images are used to produce separate images of water and fat. Second pass solutions of water and fat with improved signal-to-noise ratio can be obtained by either averaging or a least square error method.
    • 一种方法获得三个复杂图像,其中它们各自的水分和脂肪成分之间的相位差分别为α0,α0+α和α0+2α。 该方法从这三个复杂图像中获得水和脂肪图像的两个可能的解决方案。 对于具有水和脂肪成分的像素,使用基于水和脂肪的相对拉莫尔频率的二进制选择来选择一个正确的解集。 如果像素仅包含一个分量,则应用已知的统计偏差来识别分量,并因此识别像素。 为了校正误识别的像素,可以将各种滤波器应用于所有像素。 使用从三个复杂图像获得的水和脂肪溶液产生水和脂肪的单独图像。 通过平均或最小平方误差法可以获得具有改善的信噪比的水和脂肪的二次通过解。
    • 6. 发明授权
    • Chemical shift imaging with spectrum modeling
    • 化学位移成像与频谱建模
    • US5994902A
    • 1999-11-30
    • US58317
    • 1998-04-09
    • Qing-San XiangLi An
    • Qing-San XiangLi An
    • A61B5/055G01N24/08G01R33/46G01R33/485G01V3/00
    • G01R33/485G01R33/4625Y10T436/24
    • Chemical shift imaging with spectrum modeling (CSISM) models the general chemical shift spectrum as a system with N distinct peaks with known resonant frequencies and unknown amplitudes. Based on the N peak spectrum model, a set of nonlinear complex equations is set up that contains N+1 unknowns of two kdnds: the magnitudes of the N peaks, and a phasor map caused by main magnetic field inhomogeneity. Using these equations, the timing parameters for shifting the 180.degree. RF refocusing pulses for acquiring spin-echo images are optimally chosen. Corresponding timing parameters for other pulse sequences can also be optimized similarly. Using the chosen timing parameters, a plurality of images are acquired. Next, acquired image data are automatically processed to solve the complex linear equations. First, the phasor map is found by fitting various phasor map values over a small number of pixels, or "seeds", that are picked sparsely in a field of view. Second, from the original "seeds", the region of pixels that are picked to find the best-fit phasor map is grown into the entire field of view, based on a predetermined phase difference between the original seed and a neighboring pixel. The optimal phasor map value is then entered into the complex linear equations to derive the only unknown values at this point--the peak amplitudes. Optionally, second pass solutions of the peak amplitudes may be obtained using a smoothed phasor map value. When the equations are solved, the spectroscopic images are output.
    • 通过光谱建模(CSISM)的化学位移成像将一般化学位移谱模型化为具有已知共振频率和未知幅度的N个不同峰值的系统。 基于N峰频谱模型,建立了一组非线性复杂方程,其中包含两个kdnd的N + 1个未知数:N个峰值的大小以及由主磁场不均匀性引起的相量图。 使用这些等式,用于偏移用于采集自旋回波图像的180°RF重聚焦脉冲的定时参数是最佳选择的。 其他脉冲序列的相应定时参数也可以类似地进行优化。 使用所选择的定时参数,获取多个图像。 接下来,自动处理所获取的图像数据以求解复线性方程。 首先,通过在视场中稀疏地拾取的少量像素或“种子”上拟合各种相量映射值来找到相量图。 第二,从原始的“种子”,基于原始种子和相邻像素之间的预定相位差,将拾取以找到最佳拟合相量图的像素区域生长到整个视野中。 然后将最优相量映射值输入到复线性方程中,以导出此时唯一的未知值 - 峰值振幅。 可选地,可以使用平滑的相量映射值来获得峰值幅度的第二遍解。 当求解方程时,输出分光图像。
    • 7. 发明授权
    • Method of correcting for magnetic field inhomogeneity in magnetic
resonance imaging
    • 磁共振成像磁场不均匀性校正方法
    • US6150815A
    • 2000-11-21
    • US58272
    • 1998-04-09
    • Dennis Lyle JanzenDouglas George ConnellAlexander Lloyd MacKayQing-San Xiang
    • Dennis Lyle JanzenDouglas George ConnellAlexander Lloyd MacKayQing-San Xiang
    • A61B5/055G01R33/09G01R33/565G01V3/00
    • B82Y25/00G01R33/093G01R33/56563
    • A method of correcting for magnetic field inhomogeneity caused by various factors, such as implanted metal and air/tissue interfaces, in magnetic resonance imaging (MRI) is provided. Geometric distortion due to inhomogeneity in a static magnetic field B.sub.0 is corrected for by addition of a compensation gradient. The compensation gradient is applied in the slice selection direction Z, has a timing substantially identical to the standard frequency encoding gradient G.sub.x, and has an amplitude identical to the slice selection gradient G.sub.z that is applied during the initial RF excitation. Inhomogeneity in an RF field B.sub.1 is compensated for by utilizing an RF coil that is large enough in size as compared with a metal implant to make the volumetric percentage of the metal in the coil insignificant. Inhomogeneity in a gradient field G=(G.sub.x, G.sub.y, G.sub.z) is corrected for by a treatment of the most significant error factor G.sub.z that causes slice thickness error. Specifically, the method acquires two images with complementary slice thickness error by using two pulse sequences with flipped slice selection gradients G.sub.z ; combination of the two images successfully cancels the effect of the slice thickness error. Local dephasive MRI signal loss due to magnetic field inhomogeneity is corrected for by acquisition of two images with positive and negative offset G.sub.z gradient lobes, respectively. The pair of images are combined to cancel the effect of local signal loss error.
    • 提供了一种在磁共振成像(MRI)中校正由诸如植入的金属和空气/组织界面等各种因素引起的磁场不均匀性的方法。 通过添加补偿梯度来校正由静态磁场B0中的不均匀性引起的几何畸变。 在切片选择方向Z上施加补偿梯度,具有与标准频率编码梯度Gx基本相同的定时,并且具有与在初始RF激励期间施加的切片选择梯度Gz相同的振幅。 通过利用与金属植入物相比尺寸足够大的RF线圈来补偿RF场B1中的不均匀性,使得线圈中的金属的体积百分比不显着。 通过处理导致切片厚度误差的最显着误差因子Gz来校正梯度场G =(Gx,Gy,Gz)中的不均匀性。 具体地说,该方法通过使用具有翻转切片选择梯度Gz的两个脉冲序列获得具有互补切片厚度误差的两个图像; 两个图像的组合成功地消除了切片厚度误差的影响。 通过获取具有正和负偏移Gz梯度波瓣的两个图像来校正由于磁场不均匀性引起的局部剥夺性MRI信号损失。 这对图像被组合以消除本地信号丢失误差的影响。