会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 5. 发明授权
    • Method and system for enhanced data searching
    • 增强数据搜索的方法和系统
    • US07398201B2
    • 2008-07-08
    • US10371399
    • 2003-02-19
    • Giovanni B. MarchisioKrzysztof KoperskiJisheng LiangAlejandro MuruaThien NguyenCarsten TuskNavdeep S. DhillonLubos Pochman
    • Giovanni B. MarchisioKrzysztof KoperskiJisheng LiangAlejandro MuruaThien NguyenCarsten TuskNavdeep S. DhillonLubos Pochman
    • G06F17/27G06F7/00G06F17/30
    • G06F17/271G06F17/279G06F17/30616G06F17/30684Y10S707/99933Y10S707/99943
    • Methods and systems for syntactically indexing and searching data sets to achieve more accurate search results and for indexing and searching data sets using entity tags alone or in combination therewith are provided. Example embodiments provide a Syntactic Query Engine (“SQE”) that parses, indexes, and stores a data set, as well as processes natural language queries subsequently submitted against the data set. The SQE comprises a Query Preprocessor, a Data Set Preprocessor, a Query Builder, a Data Set Indexer, an Enhanced Natural Language Parser (“ENLP”), a data set repository, and, in some embodiments, a user interface. After preprocessing the data set, the SQE parses the data set according to a variety of levels of parsing and determines as appropriate the entity tags and syntactic and grammatical roles of each term to generate enhanced data representations for each object in the data set. The SQE indexes and stores these enhanced data representations in the data set repository. Upon subsequently receiving a query, the SQE parses the query also using a variety of parsing levels and searches the indexed stored data set to locate data that contains similar terms used in similar grammatical roles and/or with similar entity tag types as indicated by the query. In this manner, the SQE is able to achieve more contextually accurate search results more frequently than using traditional search engines.
    • 提供了用于语法索引和搜索数据集以实现更精确的搜索结果以及使用单独或与其组合的实体标签索引和搜索数据集的方法和系统。 示例性实施例提供了解析,索引和存储数据集的语法查询引擎(“SQE”),并且处理随后针对数据集提交的自然语言查询。 SQE包括查询预处理器,数据集预处理器,查询生成器,数据集索引器,增强自然语言解析器(“ENLP”),数据集存储库以及在一些实施例中的用户界面。 在对数据集进行预处理之后,SQE根据各种解析级别解析数据集,并酌情确定每个术语的实体标签和句法和语法角色,以生成数据集中每个对象的增强数据表示。 SQE索引并将这些增强型数据表示存储在数据集存储库中。 在随后接收到查询时,SQE还使用各种解析级别对查询进行解析,并搜索索引存储的数据集,以定位包含类似语法角色中使用的类似术语的数据和/或与查询所指示的类似实体标记类型相关的数据 。 以这种方式,SQE能够比使用传统的搜索引擎更频繁地获得更加内容相对准确的搜索结果。
    • 8. 发明授权
    • Music searching methods based on human perception
    • 基于人类感知的音乐搜索方法
    • US08326584B1
    • 2012-12-04
    • US09556086
    • 2000-04-21
    • Maxwell J. WellsDavid WallerNavdeep S. Dhillon
    • Maxwell J. WellsDavid WallerNavdeep S. Dhillon
    • G06F17/10
    • G06F17/30758G06F17/10G06F17/30017G06F17/30026G06F17/30743G06F17/30749G06F2213/0038G06F2216/01
    • A method for characterizing a musical recording as a set of scalar descriptors, each of which is based on human perception. A group of people listens to a large number of musical recordings and assigns to each one many scalar values, each value describing a characteristic of the music as judged by the human listeners. Typical scalar values include energy level, happiness, danceability, melodicness, tempo, and anger. Each of the pieces of music judged by the listeners is then computationally processed to extract a large number of parameters which characterize the electronic signal within the recording. Algorithms are empirically generated which correlate the extracted parameters with the judgments based on human perception to build a model for each of the scalars of human perception. These models can then be applied to other music which has not been judged by the group of listeners to give to each piece of music a set of scalar values based on human perception. The set of scalar values can be used to find other pieces that sound similar to humans or vary in a dimension of one of the scalars.
    • 一种用于将音乐记录表征为一组标量描述符的方法,每个标量描述符基于人的感知。 一群人听大量的音乐录音,并分配给每一个许多标量值,每个值都描述了由人类听众判断的音乐特征。 典型的标量值包括能量水平,幸福度,舞蹈能力,旋律,节奏和愤怒。 然后对由收听者判断的每首音乐进行计算处理,以提取表征记录内的电子信号的大量参数。 算法是经验生成的,其将提取的参数与基于人类感知的判断相关联,以构建人类感知的每个标量的模型。 然后,这些模型可以应用于未被听众群体判断的其他音乐,以便基于人类的感知向每首音乐提供一组标量值。 标量值的集合可以用于查找听起来类似于人类的其他部分或在其中一个标量的维度上变化。