会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 3. 发明公开
    • 반작용휠과 추력기 기반 자세제어기를 동시에 이용한 자세기동 및 가제어성 향상 방법
    • 使用基于轮式和基于THRUSTER的姿态控制器同时进行的可变性和可控性改进
    • KR1020100078412A
    • 2010-07-08
    • KR1020080136668
    • 2008-12-30
    • 한국항공우주연구원
    • 서현호용기력오시환최홍택이선호임조령김용복이혜진
    • G05D1/10G05D1/08B64G1/24
    • B64G1/26B64G1/283B64G2001/245G05D1/0883
    • PURPOSE: A maneuverability and controllability improvement method is provided to improve the attitude maneuver performance of a satellite by simultaneously applying a reaction wheel-based and thruster-based attitude controller when a part of the reaction wheel is out of order. CONSTITUTION: A thruster-based attitude controller(110) controls the drive of the thruster loaded in a satellite. A reaction wheel-based attitude controller(120) controls the drive of the reaction wheel of a satellite. A satellite dynamic mechanics model(130) diversifies the attitude of a satellite. In a satellite, a plurality of reaction wheels are included. A reaction wheel speed controller(121) produces a reaction wheel torque by using an input value from the reaction wheel-based attitude controller. A reaction wheel model(122) produces the angular momentum and the second torque of a reaction wheel by using inputted reaction wheel torque. A summer(103) sums a first torque calculating from a thruster model and a second torque calculating from the reaction wheel model.
    • 目的:提供一种机动性和可控性改进方法,以在反应轮的一部分出现故障时同时施加基于反馈轮和推进器的姿态控制器来改善卫星的姿态机动性能。 构成:基于推进器的姿态控制器(110)控制装载在卫星中的推进器的驱动。 基于反作用轮的姿态控制器(120)控制卫星的反作用轮的驱动。 卫星动力学模型(130)使卫星的态度多样化。 在卫星中,包括多个反作用轮。 反作用轮速度控制器(121)通过使用来自反作用轮的姿态控制器的输入值产生反作用力矩。 反作用轮模型(122)通过使用输入的反作用轮扭矩产生角动量和反作用轮的第二扭矩。 夏季(103)从推进器模型求和第一扭矩计算和从反作用轮模型计算的第二扭矩。
    • 4. 发明公开
    • 인공 위성의 제어 신호 검증 장치 및 방법
    • 人造卫星控制信号验证装置和方法
    • KR1020090058606A
    • 2009-06-10
    • KR1020070125229
    • 2007-12-05
    • 한국항공우주연구원
    • 박병하최종연권재욱윤영수조승원김영윤
    • G05D1/08
    • G05D1/0883
    • An artificial satellite control signal verification apparatus and a method are provided to verify an electromagnetic filed signal and a valve control signal selectively by assembling a control signal verify device of an artificial satellite and the artificial satellite. An interface unit(520) supplies power to an artificial satellite from a power supply unit(510), and receives more than an electromagnetic filed signal and a valve signal from the artificial satellite body. A verification unit(530) processes more than one of the received electromagnetic filed signal and a valve signal, and verifies whether a normal condition of a posture control system or not through the received valve signal, and it also verify whether a normal condition of a solar panel through the received electromagnetic filed.
    • 提供人造卫星控制信号验证装置和方法,通过组装人造卫星的控制信号验证装置和人造卫星来选择性地验证电磁场信号和阀门控制信号。 接口单元(520)从电源单元(510)向人造卫星供电,并且从人造卫星体接收多于电磁场信号和阀信号。 验证单元(530)处理接收到的电磁场信号和阀信号中的多于一个,并且通过接收到的阀信号来验证姿势控制系统的正常状态,并且还验证是否正常状态 太阳能电池板通过接收的电磁场。
    • 5. 发明授权
    • 정지궤도 위성의 기동 스케줄/연료소모 최적화 방법 및장치
    • 优化地球静止卫星的时间表和燃料消耗的方法和装置
    • KR100819131B1
    • 2008-04-03
    • KR1020070052545
    • 2007-05-30
    • 한국전자통신연구원
    • 김해연김재훈황유라이병선
    • B64G1/24
    • B64G1/24G05D1/0883
    • A method and an apparatus for optimizing maneuver schedule and fuel consumption for a geostationary satellite are provided to optimize the fuel consumption of the satellite through optimization of position maintenance, momentum dumping schedule, and speed increment of the satellite. A method for optimizing maneuver schedule and fuel consumption for a geostationary satellite includes the steps of: inputting east/west and north/south position maintenance periods and a momentum dumping period(S100); estimating first speed increment and second speed increment(S110); inputting the current date(S120); determining the optimum momentum dumping time and speed increment for the inputted date(S130); determining whether to perform east/west or north/south position maintenance(S140,S190); determining north/south position maintenance time and required north/south speed increment(S150); removing a momentum dumping schedule closest to the north/south position maintenance time(S160); performing the north/south position maintenance and momentum dumping(S180); determining an east/west position maintenance time and required east/west speed increment(S200); calculating new east/west speed increment by adding the first speed increment and the second increment to the east/west speed increment(S210); performing the east/west position maintenance and the momentum dumping(S220); and performing only the momentum dumping in case of determining that the east/west or north/south position maintenance is not required in the step of S140 or S190(S230).
    • 提供了一种用于优化对地静止卫星的机动时间表和燃料消耗的方法和装置,以通过优化卫星的位置维护,动量倾倒时间表和速度增量来优化卫星的燃料消耗。 一种优化对地静止卫星的机动时间表和燃料消耗的方法,包括:输入东西西,北/南位置维持期和动量倾倒期(S100); 估计第一速度增量和第二速度增量(S110); 输入当前日期(S120); 确定输入日期的最佳动量倾倒时间和速度增量(S130); 确定是否执行东/西或北/南位置维护(S140,S190); 确定北/南位置维修时间和所需的南/南速度增量(S150); 去除最接近北/南位置维护时间的动量倾倒进度(S160); 执行北/南部位置维持和动力倾倒(S180); 确定东/西位置维护时间和所需的东/西速度增量(S200); 通过将第一速度增量和第二增量加到东/西速度增量来计算新的东西向速度增量(S210); 执行东西维持和动量倾销(S220); 在S140或S190的步骤中确定不需要东/西或北/南位置维护的情况下,仅执行动量倾倒(S230)。
    • 7. 发明授权
    • 단일차분을 이용한 3축 각속도센서의 오정렬 및 축척계수 오차 보정 방법
    • 使用单一差异补偿三轴陀螺仪的不对中和比例因子误差的方法
    • KR101510435B1
    • 2015-04-10
    • KR1020130136717
    • 2013-11-12
    • 한국항공우주연구원
    • 박근주
    • G05D1/08
    • G05D1/0883
    • 본발명은단일차분을이용한 3축각속도센서의오정렬및 축척계수오차보정방법에관한것으로, 더욱상세하게는위성탑재컴퓨터에서결정된자이로표류오차추정값의단일차분(S20)과, 위성에장착된자이로각속도측정값의단일차분(S10)을이용한 3축각속도센서의오정렬및 축척계수오차보정방법에있어서, 상기위성에장착된자이로각속도측정값에대한단일차분결과(S10)값과자이로표류오차추정값의단일차분결과(S20)값을전달하는데이터획득처리단계(S100), 상기데이터획득처리단계(S100)로부터상기위성에장착된자이로각속도측정값에대한단일차분결과(S10)값과자이로표류오차추정값의단일차분결과(S20)값을전달받아, T 행렬및 자이로표류오차단일차분벡터의형태로저장하는데이터저장단계(S200), 상기데이터저장단계(S200)에의해획득한상기위성의적어도세가지의지구지향자세에대한정보들을이용하여, 의사역함수(pseudo inverse)를계산하여, 상기각속도센서의오정렬및 축척계수오차값을산출하는오정렬및 축척계수오차산출단계(S300) 및상기오정렬및 축척계수오차산출단계(S300)에서산출한상기각속도센서의오정렬및 축척계수오차값을이용하여, 상기각속도센서의오정렬및 축척계수를보정하는오차보정단계(S400)로이루어지는것을특징으로하는단일차분을이용한 3축각속도센서의오정렬및 축척계수오차보정방법에관한것이다.
    • 本发明涉及一种用于补偿使用单一差异的3轴角速度传感器的未对准和比例因子误差的方法,更具体地说,涉及用于补偿3轴的不对准和比例因子误差的方法 使用由卫星车载计算机确定的陀螺漂移误差估计值的单一差异(S20)和安装在卫星上的陀螺仪的角速度测量值的单一差异(S10)的角速度传感器。 用于补偿使用单一差异的3轴角速度传感器的未对准和比例因子误差的方法包括:数据获取处理步骤(S100),将用于角速度测量值的单个差分结果(S10) 陀螺仪在卫星上沉积,陀螺漂移误差估计值的单一差分结果(S20)值; 数据存储步骤(S200),从数据采集中接收用于安装在卫星上的陀螺仪的角速度测量值的单个差分结果(S10)值和陀螺漂移误差估计值的单一差分结果(S20)值 处理步骤(S100)并以T矩阵和陀螺漂移误差单差矢量的形式存储数据; 通过使用通过数据存储步骤(S200)获取的关于卫星的至少三个地球定向位置的信息来计算伪反函数的未对准和比例因子误差计算步骤(S300),并计算未对准和比例 角速度传感器的因子误差值; 以及误差补偿步骤(S400),其通过使用由所述未对准和比例因子误差计算步骤计算的角速度传感器的未对准和比例因子误差值来补偿角速度传感器的未对准和销售系数( S300)。
    • 8. 发明公开
    • NORAD TLE 데이터 기반의 궤도결정 시스템 및 그 방법
    • 基于NORAD两线元素的ORBIT决定系统和方法
    • KR1020130022635A
    • 2013-03-07
    • KR1020110085360
    • 2011-08-25
    • 한국항공우주연구원
    • 김해동
    • B64G1/10B64G3/00H04B7/185
    • B64G1/10B64G1/242B64G3/00G05D1/0883H04B7/185
    • PURPOSE: A NORAD TLE(North American Aerospace Defense Command Two-line Elements) data-based orbit determination system and a method thereof are provided to obtain high precision of position information by utilizing NORAD TLE data receiving from a JSPOC(Joint Space Operations Center) as pseudo measurement data. CONSTITUTION: A NORAD TLE data-based orbit determination system comprises a TLE preprocessing part(100), an orbit determining part(200), and a position information output part(300). The TLE preprocessing part propagates NORAD data to an SGP-based orbit propagator to obtain position data on an ECI(Earth-Centered Inertial) coordinate system; converts the position data on the ECI coordinate system to position data on an ECEF(Earth-Centered-Earth-Fixed) coordinate system; and converts the converted position data on the EDEF coordinate system to PCE format position data. The orbit determining part determines information on the position of an orbit determining target through a batch processing technique by using the PCE format position data as pseudo measurement data. The position information output part converts the information on the position of the orbit determining target to a preset data format and outputs the data. [Reference numerals] (100) TLE preprocessing part; (200) Orbit determining part; (300) Position information output part
    • 目的:提供一种基于数据的轨道确定系统的NORAD TLE(北美航空航天防务指挥系统)的轨道确定系统及其方法,以通过利用从JSPOC(联合太空作战中心)接收的NORAD TLE数据来获得位置信息的高精度, 作为伪测量数据。 构成:NORAD TLE基于数据的轨道确定系统包括TLE预处理部分(100),轨道确定部分(200)和位置信息输出部分(300)。 TLE预处理部分将NORAD数据传播到基于SGP的轨道传播器,以获取ECI(以地心为中心的)惯性坐标系的位置数据; 将ECI坐标系上的位置数据转换为在ECEF(以地球为中心的地球固定)坐标系上的位置数据; 并将EDEF坐标系上的转换位置数据转换为PCE格式位置数据。 轨道确定部通过使用PCE格式位置数据作为伪测量数据,通过批量处理技术来确定关于轨道确定目标的位置的信息。 位置信息输出部将关于轨道确定对象的位置的信息转换为预设的数据格式,并输出该数据。 (附图标记)(100)TLE预处理部; (200)轨道确定部分; (300)位置信息输出部
    • 9. 发明授权
    • 위성에 대한 원격측정과 시뮬레이션의 동시처리를 위한실시간운용처리 시스템 및 그 방법
    • 电流处理系统和电视数据的方法以及用于卫星操作的模拟电视数据
    • KR100758275B1
    • 2007-09-12
    • KR1020060094982
    • 2006-09-28
    • 한국전자통신연구원
    • 김명자정원찬김재훈
    • B64G3/00B64G1/24
    • G05D1/0883B64G3/00G05D1/0011
    • A real-time operation control system for simultaneous remote measurement on a satellite and for simultaneously processing a simulation and, a method thereof are provided to reduce the load of the system by allowing a first operation control section to process remotely measured satellite remote measurement data and allowing a second operation control section to simultaneous process of measured and simulated data. A real-time operation control system includes a system managing section(201), a remote measurement data processing section(202), a remote measurement data managing section(203), a data base managing section(204), an instruction planning section(205), and a remote instruction processing section(206). The real-time operation control system receives satellite measurement data from a TTC or transmits a remote instruction. The real-time operation control system is connected to a simulator to simulate the state of a satellite to transmit a remote instruction for simulation and receivers remote simulation measurement data.
    • 一种实时操作控制系统,用于在卫星上同步远程测量并同时处理模拟,并提供其方法,以通过允许第一操作控制部分处理远程测量的卫星远程测量数据来减少系统的负载, 允许第二操作控制部分同时处理测量和模拟数据。 实时操作控制系统包括系统管理部分(201),远程测量数据处理部分(202),远程测量数据管理部分(203),数据库管理部分(204),指令计划部分 205)和远程指令处理部(206)。 实时操作控制系统从TTC接收卫星测量数据或发送远程指令。 实时操作控制系统连接到模拟器,模拟卫星的状态,发送用于仿真的远程指令和接收器远程仿真测量数据。
    • 10. 发明授权
    • 태양 복사 압력을 이용하여 타원 궤도에 있는 위성 자세제어 방법
    • 使用太阳辐射压力的椭圆形卫星卫星控制方法
    • KR100573876B1
    • 2006-04-25
    • KR1020040054245
    • 2004-07-13
    • 한국과학기술원
    • 크리시나데브쿠마방효충탁민제
    • B64G1/24B64G1/22
    • B64G1/24B64G1/363B64G1/407B64G2001/245G05D1/0883
    • 본 발명은 타원 궤도에 있는 위성 또는 초기에 원형 궤도에 있었으나 환경적 원인으로 인해 타원 궤도로 교란된 위성의 자세를 제어하는 방법에 관한 것이다. 본 발명은 위성 자세 제어를 위해 원하는 토크를 제공하는데 태양 복사 압력을 응용한 것이다. 위성에는 미리 결정된 방향(위성 본체에 고정된 Y 축)을 따라 위성으로부터 멀러지는 방향으로 연장하는 2개의 대향되게 배치된 경량의 태양 패널(solar panel)이 장착된다. 이들 태양 패널 중 하나 또는 이들 둘 모두를 간단한 오픈-루프 제어 법칙(open-loop control law)에 따라 각 구동 모터를 사용하여 그 축에 대해 원하는 각도로 회전시키는 것에 의해, 위성 축에 대해 토크가 생성되어 원하는 자세의 동작을 달성한다. 오픈-루프 제어 법칙은 이심률에 의해 야기된 여기(excitation)를 중화시키도록 해석적 접근법을 사용하여 유도되며, 이것은 센서에 의해 제공되는 위성 위치와 태양 각의 정보에 기초하여 아날로그 로직에 의해 구현된다. 본 발명은 일반적으로 약 20배를 초과하는 인수만큼 위성의 성능을 크게 향상시키고 이것은 특정 시스템 파라미터에 대해 1도의 부분(fraction of a degree)만큼만 태양 패널의 회전을 요구한다. 따라서, 본 발명의 반-수동 특성은 장래 우주 공간에 특히 저궤도 위성 및 정지궤도 위성에 응용하는데 매력적이다.