会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 2. 发明公开
    • L―시스테인의 생물학적 고농도 제조방법
    • 使用高基质浓度分布的L-酪氨酸的生产
    • KR1020090011871A
    • 2009-02-02
    • KR1020070075885
    • 2007-07-27
    • 연세대학교 산학협력단주식회사 일신케미칼
    • 신철수김현중윤성훈
    • C12P13/12
    • C12P13/12C12N9/14
    • A method of manufacturing high concentration of L-cysteine biologically is provided to manufacture the high concentration of L-cysteine by adding aiding agent and salt contributing to inducible enzyme stabilization in a process of obtaining the eutectic base compound and lowering a melting point. A method of manufacturing high concentration of L-cysteine biologically comprises steps of: mixing D,L-2-amino-Delta2-thiazoline-4-carboxylic acid, D-sorbitol, Na2CO3, MgCl2 mixture and melting aiding agent of tris hydrochloride buffered aqueous solution and obtaining transparent eutectic base compound; and putting enzyme mixture of fungi including L-ATC hydrolase and S-carbamyl-L-cystein hydrolase in the eutectic base compound, reacting enzyme and obtaining the L-cysteine. The fungi is Zoogloea species.
    • 提供了生产高浓度L-半胱氨酸的方法,通过在获得共晶基础化合物和降低熔点的方法中加入辅助剂和有助于诱导型酶稳定化的盐来制造高浓度的L-半胱氨酸。 生产高浓度L-半胱氨酸的方法包括以下步骤:将D,L-2-氨基-Δ2-噻唑啉-4-羧酸,D-山梨糖醇,Na 2 CO 3,MgCl 2混合物和Tris盐酸缓冲水溶液的助溶剂 溶液并获得透明共晶基础化合物; 并将含有L-ATC水解酶和S-氨基甲酰基-L-半胱氨酸水解酶的真菌的酶混合物置于共晶基础化合物中,反应酶并获得L-半胱氨酸。 真菌是Zoogloea物种。
    • 4. 发明授权
    • 시공단계에서의 건설 공사비용 및 이산화탄소 배출량 예측 시스템 및 방법
    • 通过估算建筑成本和二氧化碳排放评估经济和环境影响评估的系统和方法
    • KR101322504B1
    • 2013-10-28
    • KR1020120045876
    • 2012-04-30
    • 연세대학교 산학협력단
    • 홍태훈구충완지창윤김지민김현중
    • G06F19/00G06F17/10
    • G06Q50/08G06F17/18G06N3/02G06N3/126G06Q10/06313
    • PURPOSE: A system for predicting construction costs and carbon dioxide emission amount in a construction step and a method thereof are provided to estimate the construction costs and the carbon dioxide emission amount in an initial construction step, thereby reducing time and effort required for a construction project. CONSTITUTION: A data server (110) stores construction project data, construction costs, and carbon dioxide emission amount data in a construction step. A data collection module (120) collects construction project data in the data server. A material construction amount prediction module (130) predicts material construction amount based on the construction project data. A construction costs and carbon dioxide emission amount calculation module (140) calculates carbon dioxide emission amount and construction costs based on the material construction amount and the construction project data. [Reference numerals] (100) System for predicting the costs of a construction work and CO_2 emissions at the stage of construction; (110) Data server; (120) Data collection module; (130) Material construction amount prediction module; (131) Similarity calculating unit; (132) Predicting value filtering unit; (133) Parameter optimizing unit; (140) Construction costs and carbon dioxide emission amount calculation module
    • 目的:建立施工阶段预测施工成本和二氧化碳排放量的制度及方法,对初步施工工序施工成本和二氧化碳排放量进行估算,从而减少施工工程所需的时间和精力 。 规定:数据服务器(110)在施工步骤中存储施工项目数据,施工成本和二氧化碳排放量数据。 数据收集模块(120)收集数据服务器中的建设项目数据。 材料施工量预测模块(130)根据施工项目数据预测材料施工量。 建筑成本和二氧化碳排放量计算模块(140)根据材料施工量和施工项目数据计算二氧化碳排放量和施工成本。 (附图标记)(100)在施工阶段预测施工作业成本和二氧化碳排放量的系统 (110)数据服务器; (120)数据采集模块; (130)材料建设量预测模块; (131)相似度计算单位; (132)预测值过滤单元; (133)参数优化单元; (140)建筑成本和二氧化碳排放量计算模块
    • 7. 发明公开
    • 일사량 예측 방법 및 장치
    • 用于预测每日太阳辐射水平的方法和装置
    • KR1020140021179A
    • 2014-02-20
    • KR1020120087104
    • 2012-08-09
    • 연세대학교 산학협력단
    • 홍태훈구충완이민현지창윤김지민김현중
    • G06F19/00G06F17/30
    • Y02A90/15G01W1/10G06F17/18G06F17/30601G06N3/126Y02E10/50
    • A method for predicting a daily solar radiation level according to the embodiments of the present invention includes the steps of: providing a case database to express each case by a dependent variable including the daily solar radiation level according to the subdivisions of the seasons and a plurality of independent variables including geographical attributes and meteorological attributes measured according to the subdivisions of the seasons and a test case to which independent variable test values are given; dividing the meteorological attributes and the daily solar radiation level according to the subdivisions of the seasons in the cases of the case database into groups according to the subdivisions of the seasons; and estimating a daily solar radiation level prediction value based on a search result according to the subdivisions of the seasons searched from the group according to the subdivisions of the seasons in the case database with regard to the given independent variable test values. [Reference numerals] (AA) Grasp insolation properties; (BB) Meteorological observation document DB; (CC) Grouping by season; (DD) Prediction model; (EE) Insolation by season
    • 根据本发明的实施例的用于预测日常太阳辐射水平的方法包括以下步骤:提供病例数据库,以通过依赖于每个季节的细分的日变化量的因变量来表示每个病例, 的自变量,包括根据季节细分测量的地理属性和气象属性以及给出独立变量测试值的测试用例; 根据季节细分,根据案例数据库中季节的分类将气象属性和日照量分为几组; 以及根据所述组中搜索到的所述季节的细分,根据所述病例数据库中关于给定的独立变量测试值的季节的细分,来估计每日太阳辐射水平预测值。 (附图标记)(AA)抓握日照特性; (BB)气象观测资料DB; (CC)按季分组; (DD)预测模型; (EE)按季度推迟
    • 8. 发明授权
    • L―시스테인의 생물학적 고농도 제조방법
    • 使用高底物浓度转换生产L-半胱氨酸
    • KR100925416B1
    • 2009-11-06
    • KR1020070075885
    • 2007-07-27
    • 연세대학교 산학협력단주식회사 일신케미칼
    • 신철수김현중윤성훈
    • C12P13/12
    • 본 발명은 L-시스테인의 생물학적 고농도 제조방법에 관한 것으로서, 더욱 상세하게는 합성 기질 전구체인 D,L-2-아미노-Δ
      2 -티아졸린-4-카르복실산(D,L-2-amino-Δ
      2 -thiazolin-4-carboxylic acid, 이하 'D,L-ATC'라 칭함), D-소르비톨, 염류 및 용융보조제를 혼합하여 고농도 공융 기질혼합물을 제조하는 단계와, 상기 공융 기질혼합물을 미생물 유도효소 혼합물을 이용하여 L-시스테인(L-Cysteine)을 고농도로 제조하는 생물전환 단계로 이루어진 L-시스테인의 생물학적 고농도 제조방법에 관한 것이다. 따라서, 본 발명은 공융 기질혼합물 형성을 통해 고농도의 균질화된 기질 혼합물을 제조함으로써 최적 반응 온도에서 L-시스테인 생산 수율, 생산 속도, 및 생산성을 획기적으로 증진시킬 수 있다. 아울러, 본 발명에서 제조되는 L-시스테인은 생물학적 합성법에 의해 제조되므로 기존의 머리카락 산-가수분해법에 의한 공업화학적 L-시스테인 생산법으로 야기되는 환경오염, 동물 유래 원료 사용 문제, 낮은 생산성 등의 단점을 극복할 수 있다.
      L-시스테인, D,L-ATC, D-소르비톨, 염 혼합물, 공융 기질혼합물, 주글레아 균종
    • 9. 发明公开
    • 고속도로 휴게소의 최적 위치와 규모의 산출 방법 및 장치
    • 获取最佳位置和表达服务区容量的方法和设备
    • KR1020140021178A
    • 2014-02-20
    • KR1020120087103
    • 2012-08-09
    • 연세대학교 산학협력단
    • 홍태훈구충완김지민지창윤김현중
    • G06Q10/04G06Q50/30G06Q30/02G06Q10/06
    • G06Q10/04G06Q10/063G06Q30/0201G06Q50/30
    • A method for calculating an optimal location and a capacity of an expressway service area according to an embodiment of the present invention comprises steps of: providing an example database expressed with multiple independent variables including at least passage traffic volume and dependent variables including service area utilization rate and sales per vehicle and test examples in which independent variable test values are offered; estimating a service area utilization rate value based on a result from searching the example database for the offered independent variable test values; and estimating a sales value per vehicle based on a result from searching the example database for the offered independent variable test values and the estimated service area utilization rate value. Moreover, the present invention can include a step of determining the capacity of the expressway service area to be capable of attaining target service rate from the estimated service area utilization rate value. [Reference numerals] (AA) Independent variables; (BB) First estimation model; (CC) Service area utilization rate; (DD) Second estimation model; (EE) Revenue; (FF) Convenience facility area; (GG) Operation facility area; (HH) Sales facility area; (II) Total Service area
    • 根据本发明的实施例的用于计算高速公路服务区域的最佳位置和容量的方法包括以下步骤:提供由多个独立变量表示的示例数据库,所述多个独立变量包括至少通过业务量和从属变量,包括服务区域利用率 每辆车的销售量和提供自主变量测试值的测试示例; 基于从所述示例数据库搜索所提供的独立变量测试值的结果来估计服务区域利用率值; 以及基于从所述示例数据库搜索所提供的独立变量测试值和估计服务区域利用率值的结果来估计每辆车辆的销售价值。 此外,本发明可以包括从所估计的服务区域利用率值确定高速公路服务区域能够获得目标服务速率的容量的步骤。 (附图标记)(AA)独立变量; (BB)第一估计模型; (CC)服务区利用率; (DD)第二估计模型; (EE)收入; (FF)便利设施区; (GG)经营设施区; (HH)销售设施区; (二)服务总量
    • 10. 发明公开
    • 건설 프로젝트의 시간-비용 상충 문제를 해결할 수 있는 다중 목적 최적화 모델링 방법 및 장치
    • 用于处理多目标优化模型的方法和装置,用于解决建筑项目中的时间成本贸易问题
    • KR1020140014760A
    • 2014-02-06
    • KR1020120081630
    • 2012-07-26
    • 연세대학교 산학협력단
    • 홍태훈구충완지창윤김지민김현중
    • G06Q50/08G06Q10/06G06Q50/10
    • G06Q50/08G06Q10/063118G06Q10/06313G06Q10/067G06Q50/10
    • A time-cost optimization modeling method of a building project structurized as step unit activities applying various techniques and resources is provided. To display a time index and a cost index to be optimized as technique and resource functions, the method includes a step of defining a determination flat surface as the minimum extreme point and the maximum extreme point of the cost index and the time index obtained when the construction project progresses by applying the techniques and the resources, a step of mapping the determination flat surface with a standardization index flat surface and calculating one or more optimized values through genetic algorithm based on chromosomes having the techniques and the resources for each unit activity as genes in regard to standardized index points in the standardization index flat surface, and a step of generating one or more construction projects by combining the techniques and the resources corresponding to the value. [Reference numerals] (AA) Start; (BB) End; (S41) Structure a project by step unit activities to which more than one alternative can be applied; (S42) Define a determination space by minimum extreme points of indexes within a basic index space; (S43) Map the determination space onto a standardized index space which is dimensionless and normalized; (S44) Calculate at least one optimized value through a genetic algorithm based on chromosomes having alternatives to each unit activity as genes in regard to standardized index points; (S45) Generate at least one project by combining alternatives corresponding to at least one optimized value
    • 提供了构建为应用各种技术和资源的步骤单元活动的建筑项目的时间成本优化建模方法。 为了显示作为技术和资源功能优化的时间索引和成本指标,该方法包括将确定平面定义为成本指数的最小极值点和最大极值点以及当 施工项目通过应用技术和资源进行,通过基于具有每个单位活动的技术和资源的基因的染色体作为基因的遗传算法计算一个或多个优化值,将测定平面映射到标准化指标平面的步骤 关于标准化指标平面图中的标准化指标点,以及通过组合技术和与该值对应的资源来生成一个或多个建设项目的步骤。 (附图标记)(AA)开始; (BB)结束; (S41)通过单位活动构建一个项目,可以应用多个替代方案; (S42)在基本索引空间内通过索引的最小极值点定义确定空间; (S43)将确定空间映射到无量纲和标准化的标准化索引空间; (S44)通过基于具有替代每个单位活动的染色体的遗传算法作为关于标准化索引点的基因来计算至少一个优化值; (S45)通过组合与至少一个优化值相对应的备选方案来生成至少一个项目