会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 91. 发明授权
    • 무인 항공기의 비행 제어 장치 및 그 방법
    • 无人驾驶飞机的控制装置及其方法
    • KR101539865B1
    • 2015-07-28
    • KR1020130142859
    • 2013-11-22
    • 인하공업전문대학산학협력단
    • 최효현
    • G05D1/10
    • 본발명은무인항공기의비행제어장치및 그방법에관한것이다. 본발명에따른비행제어장치는, 주변의다른무인항공기와수시로위치정보를송수신하는상기무인항공기로부터상기무인항공기의위치정보및 ID 정보를수신하는통신부; 상기복수의무인항공기의위치정보및 상기 ID 정보를저장하는저장부; 감지된표적을향하여돌진하는무인항공기가송신한이동직전의위치정보및 이동방향정보를수신하는이동정보수신부; 및충돌로인해소실된무인항공기의위치에새로운무인항공기를파견하여비행편대를복구하도록제어하는비행제어부를포함한다. 이와같이본 발명에따르면, 충돌에참여한편대비행중인복수개의무인항공기중에서하나의항공기와의통신을통해그 나머지무인항공기를예측하는것이가능하다. 또한, 충돌에의하여소실된무인항공기를복구하는데있어서, 편대비행하는무인항공기의비행을제어함으로써에너지효율성이높은방법으로소실된무인항공기를파견하여관리할수 있다.
    • 92. 发明授权
    • 무인항공기 충돌방지를 위한 지상통제 방법
    • 无人机防撞接地控制方法
    • KR101483057B1
    • 2015-01-15
    • KR1020140007160
    • 2014-01-21
    • 엘아이지넥스원 주식회사
    • 이강인승대범
    • G05D1/10
    • G05D1/0027G05D1/0044G05D1/101
    • 무인항공기 충돌방지를 위한 지상통제 방법을 공개한다. 적어도 하나의 무인항공기 및 지상통제소를 포함하는 무인항공기 지상통제 시스템의 무인항공기 충돌방지를 위한 지상통제 방법에 있어서, 상기 적어도 하나의 무인항공기 각각이 복수개의 센서로부터 생성되는 비행정보를 전송하는 단계; 상기 지상통제소가 상기 적어도 하나의 무인항공기 각각으로부터 전송되는 상기 비행정보와 기 저장된 지형지물정보를 비교하여 상기 적어도 하나의 무인항공기 각각에 대해 기설정된 방식으로 충돌 예측값을 획득하는 단계; 및 획득된 상기 충돌 예측값에 따라 상기 무인항공기를 제어하기 위한 제어신호를 생성하여 상기 무인항공기로 전송하는 단계;를 포함한다.
      따라서, 본 발명의 무인항공기 충돌방지를 위한 지상통제 방법은 무인항공기에 지상충돌방지장치의 장착이 필요가 없으므로 가격 경쟁력 및 공간 확보에 효과가 있다. 또한, 하나의 지상통제소에서 다수의 무인항공기를 조종할 수 있으므로, 동시에 다수의 무인항공기에 대하여 지상충돌방지 기능을 수행할 수 있다.
    • 公开了一种用于防止无人驾驶飞行器碰撞的地面控制方法。 一种用于防止包括至少一个无人驾驶飞行器和地面控制室的无人驾驶飞行器地面控制系统的无人驾驶飞行器的碰撞的地面控制方法包括以下步骤:通过至少一个无人驾驶飞行器发送生成的飞行信息 通过多个传感器; 将由至少一个无人飞行器发送的飞行信息与预先存储的地理特征信息进行比较,以预定方式获得至少一个无人机的碰撞预测值; 以及根据获得的碰撞预测值产生控制信号以控制无人机,以发送到无人机。 根据本发明,地面控制方法是经济的,并且有助于无人驾驶飞行器固定空间,因为地面防撞装置不需要安装在无人驾驶飞行器中。 此外,多台无人驾驶飞机可以由单个地面控制机构操作,因此,可以同时对多台无人机进行地面防撞功能。
    • 93. 发明授权
    • 고도 적응형 전파고도계를 이용하는 정밀지형 참조 항법장치
    • 使用高度自适应雷达高度计的精密地雷导航装置
    • KR101403357B1
    • 2014-06-05
    • KR1020130039179
    • 2013-04-10
    • 한화시스템 주식회사
    • 백인찬
    • G01C21/20G01S13/88G05D1/10
    • G01C21/20B64D47/00G01S13/882G05D1/10G08G5/00
    • The present invention relates to navigation technology and, more particularly, to a precision topography-aided navigation apparatus using an elevation-adaptive radio altimeter in which detection is allowed to be performed by using a plurality of waveforms that can be convertibly generated according to detected altitudes. The navigation apparatus that measures the altitude of a flight vehicle includes a continuous wave generating unit that generates a continuous wave signal; a frequency modulated wave generating unit that generates a linear frequency modulation signal by using the continuous wave signal which is generated by the continuous wave generating unit; and a control unit that controls so that at least one of the continuous wave signal generated by the continuous wave generating unit and the linear frequency modulation signal generated by the frequency modulated wave generating unit is transmitted on the basis of the altitude of the flight vehicle.
    • 本发明涉及导航技术,更具体地,涉及一种使用仰角自适应无线电高度计的精密地形辅助导航装置,其中允许通过使用根据检测到的高度可转换地生成的多个波形来进行检测 。 测量飞行器高度的导航装置包括产生连续波信号的连续波发生单元; 频率调制波生成单元,其通过使用由连续波生成单元生成的连续波信号来生成线性调频信号; 以及控制单元,其控制使得由连续波生成单元生成的连续波信号和由调频波生成单元生成的线性频率调制信号中的至少一个基于飞行器的高度被发送。
    • 95. 发明公开
    • 초기정렬 주행 시스템
    • 自对准驱动系统
    • KR1020140042346A
    • 2014-04-07
    • KR1020120109015
    • 2012-09-28
    • 주식회사 두시텍
    • 정진호박용희박진모정영호
    • G05D1/10G01S19/39
    • Disclosed is a self-alignment driving system for performing precise self-alignment for correcting the position of navigation equipment. To that end, the present invention includes: a GDPS receiver which calculates the position, speed, angle, and posture of DGINS by combining the angle, speed, posture measured by a three-axis gyro sensor, a three-axis acceleration sensor, an angular sensor, and a temperature sensor and DGPS compensation data; an INS sensor which searches for two arbitrary first position points recorded in the movement path of an unmanned moving device not in a radio shadow area using a camera and, if two arbitrary second position points recorded in the boundary of the shadow area are found, aligns the first and second position points in order initially; and a navigation computer which dynamically compensates the position data of the navigation equipment using the values calculated by the GCPS receiver and the values from the self-alignment of the INS sensor. By doing so, the present invention enables an unmanned moving device to operate autonomously in a region (where GPS reception ratio is not greater than 50%) including many radio shadow areas of GPS reception (radio shadow areas including obstacles) and can enhance GPS compensation effects by using inexpensive DGPS reference stations in GPS-available regions. [Reference numerals] (111) Landmark tracer; (112) Navigation equipment; (120) DGINS integrated navigation equipment; (121,DD,EE,) Image processing unit; (122) Proximity sensor unit; (123) [Navigation computer] Algorithm for initial arrangement of line tracing for image landmarks in a periodic dynamic environment; (124) Angle sensor; (125) DGPS receiver; (130) Moving DGPS station; (AA) Building obstacle; (BB) GPS shadow area; (CC) Building (obstacle); (FF) Main processing; (GG) Main processor; (HH) Three-axis gyro; (II) Three-axis speed sensor; (JJ) Temperature sensor
    • 公开了一种用于对导航装置的位置进行精确的自对准的自对准驱动系统。 为此,本发明包括:GDPS接收机,通过组合由三轴陀螺传感器测量的角度,速度,姿势,三轴加速度传感器,三轴加速度传感器, 角度传感器,温度传感器和DGPS补偿数据; INS传感器,其使用相机搜索记录在无人机移动装置的移动路径中的两个任意的第一位置点,并且如果找到记录在阴影区域的边界中的两个任意的第二位置点,则对齐 第一个和第二个位置点首先; 以及导航计算机,其使用由GCPS接收机计算的值和来自INS传感器的自对准的值来动态地补偿导航设备的位置数据。 通过这样做,本发明能够使无人机移动装置在GPS接收的多个无线电阴影区域(包括障碍物的无线电阴影区域)的区域(GPS接收比率不大于50%)内自主运行,并且可以增强GPS补偿 在GPS可用区域使用廉价的DGPS参考站的效果。 (附图标记)(111)地标示踪剂; (112)导航设备; (120)DGINS综合导航设备; (121,DD,EE,)图像处理单元; (122)接近传感器单元; (123)[导航计算机]用于在周期性动态环境中图像界标的行跟踪的初始布置的算法; (124)角度传感器; (125)DGPS接收机; (130)移动DGPS站; (AA)建筑障碍; (BB)GPS影像区域; (CC)建筑(障碍); (FF)主要加工; (GG)主处理器; (HH)三轴陀螺仪; (二)三轴速度传感器; (JJ)温度传感器
    • 98. 发明授权
    • 실시간 3D 데이터 송수신을 위한 3D 데이터 처리 장치 및 방법
    • 3D数据处理设备和实时3D数据传输和接收的方法
    • KR101325926B1
    • 2013-11-07
    • KR1020120054190
    • 2012-05-22
    • 동국대학교 산학협력단
    • 조경은엄기현송웨이조성재
    • G05D1/10B25J9/00G06T15/00
    • G05D1/10B25J9/162B25J19/02G01B11/24G06T17/00G06T2207/10028
    • The present invention relates to an apparatus and method for processing 3D data for transmitting and receiving the 3D data in real time. More particularly, at least one point cloud about topography is received and quantized. A local voxel map which is previously stored in a remote control robot is updated based on the quantized point cloud. A new local voxel index array is generated based on the voxel information of the updated local voxel map and the generated new local voxel index array is transmitted to a remote control server. The apparatus and method for processing the 3D for transmitting and receiving the 3D in real time reduce the quantity of data to be transmitted by transmitting the point cloud which is not overlapped among the point clouds about the topography which the remote control robot obtains. [Reference numerals] (110) Remote control robot;(120) Remote control server;(AA) Network
    • 本发明涉及一种用于处理实时发送和接收3D数据的3D数据的装置和方法。 更具体地,接收和量化关于地形的至少一个点云。 先前存储在远程控制机器人中的局部体素图基于量化点云被更新。 基于更新的本地体元映射的体素信息生成新的局部体元索引阵列,并且生成的新的局部体素索引阵列被发送到远程控制服务器。 用于通过发送远程控制机器人获得的地形之间的点云之间不重叠的点云来实时处理3D发送和接收3D的装置和方法实时地减少要发送的数据量。 (附图标记)(110)遥控机器人;(120)遥控服务器;(AA)网络
    • 99. 发明公开
    • 자원탐사와 채취를 위한 심해무인잠수정의 위치제어시스템 및 방법
    • 深海潜水机器人控制系统,具有指示器和图像壁作为外部设备
    • KR1020130117629A
    • 2013-10-28
    • KR1020120096852
    • 2012-09-01
    • 이상윤
    • 이상윤
    • B63C11/48G05D1/10
    • B63C11/48G05D1/10
    • PURPOSE: A position control system and method of a deep sea remote operated vehicle for exploring and collecting resources are provided to enable the precise exploration and collection of resources by preventing a collision even if multiple deep sea remote operated vehicles are simultaneously powered. CONSTITUTION: A position control system of a deep sea remote operated vehicle for exploring and collecting resources comprises a deep sea remote operated vehicle (10), an indicator, and external devices (20). The deep sea remote operated vehicle explores and collects resources in the deep sea. The indicator allows the deep sea remote operated vehicle to recognize the exploration and collection reference point of the resources. The external devices have a virtual wall setting function.
    • 目的:提供探索和收集资源的深海遥控车辆的位置控制系统和方法,以便即使多台深海遥控车辆同时供电也能防止碰撞,从而进行精确的勘探和资源采集。 构成:用于探索和收集资源的深海遥控车辆的位置控制系统包括深海遥控车辆(10),指示器和外部设备(20)。 深海遥控车辆探索和收集深海资源。 该指标允许深海遥控车辆识别资源的勘探和采集参考点。 外部设备具有虚拟墙设置功能。
    • 100. 发明公开
    • 무인 항공기
    • 不定期的空中客车
    • KR1020130095167A
    • 2013-08-27
    • KR1020120142813
    • 2012-12-10
    • 더 보잉 컴파니
    • 알프레도크리아두
    • G05D1/10
    • B64C19/00B64C31/02B64C31/024B64C39/024B64C2201/021B64C2201/042G05D1/0005G05D1/105Y02T50/53
    • PURPOSE: An unmanned aerial vehicle (UAV) is provided to control the rotation speed of a rotor during a flying operation by controlling a bank angle, thereby easily controlling the lift force and the advance speed. CONSTITUTION: A motor/generator (140) is arranged to be driven by a rotor (190). The motor/generator charges a battery (200) by supplying power to the battery. The rotor is driven to rotate by the relative flow of air passing by a UAV (10). A flight management system (210) includes a speed controller and aircraft sensors (160). The aircraft sensors are arranged to measure the total sum of the kinetic energy and potential. [Reference numerals] (140) Motor/generator; (160) Aircraft sensors; (200) Battery; (210) Flight managing system
    • 目的:提供无人飞行器(UAV),通过控制倾斜角度来控制飞行操作期间转子的转速,从而容易地控制升力和提前速度。 构成:电动机/发电机(140)布置成由转子(190)驱动。 电机/发电机通过向电池供电来对电池(200)充电。 转子通过无人机(10)通过的空气的相对流动被驱动旋转。 飞行管理系统(210)包括速度控制器和飞行器传感器(160)。 飞机传感器布置成测量动能和潜力的总和。 (附图标记)(140)电动机/发电机; (160)飞机传感器; (200)电池; (210)飞行管理系统