会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明专利
    • Failed fuel inspection apparatus and method
    • 燃油检查装置和方法失效
    • JP2013061199A
    • 2013-04-04
    • JP2011198948
    • 2011-09-13
    • Toshiba Corp株式会社東芝
    • KUMANOMIDO HIRONORIHIGUCHI SHINICHIMATSUMIYA KOJISUGAWARA SATOSHI
    • G21C17/07
    • PROBLEM TO BE SOLVED: To provide a failed fuel inspection technique for detecting radioactive leakage of a fuel assembly without performing suspension.SOLUTION: A failed fuel inspection apparatus comprises a heating rod 43, a shipper cap 51 and a gas inspection unit 50. The heating rod 43 is inserted into a used fuel assembly 10 and a space 32 of a square pipe 31 of a fuel rack and heats the surroundings of the used fuel assembly 10. The shipper cap 51 collects air bubbles which are generated inside the used fuel assembly 10 by the heating, in the upper part of the used fuel assembly. The gas inspection unit 50 recovers the collected air bubbles and inspects whether or not any radioactive component is contained therein.
    • 要解决的问题:提供用于检测燃料组件的放射性泄漏的失效燃料检查技术,而不进行悬浮。 解决方案:失效的燃料检查装置包括加热棒43,托运帽51和气体检查单元50.加热棒43插入到用过的燃料组件10和方管31的空间32中 燃料架并加热所使用的燃料组件10的周围。托运帽51在所使用的燃料组件的上部中通过加热收集在废燃料组件10内部产生的气泡。 气体检查单元50回收收集的气泡并检查其中是否含有放射性成分。 版权所有(C)2013,JPO&INPIT
    • 2. 发明专利
    • Apparatus and method for inspecting homogeneity of neutron poison
    • 检测中子毒素均质的装置和方法
    • JP2011209028A
    • 2011-10-20
    • JP2010075473
    • 2010-03-29
    • Toshiba Corp株式会社東芝
    • KUMANOMIDO HIRONORINITTO KOICHIMATSUMIYA KOJIYOSHIOKA KENICHISUGAWARA SATOSHI
    • G21C17/06
    • PROBLEM TO BE SOLVED: To detect the presence of smaller lumps of neutron poison when the homogeneity of the neutron poison dispersed in fuel is inspected.SOLUTION: A neutron poison homogeneity inspection apparatus which inspects the homogeneity of neutron poison in a fuel 5 to be inspected that contains neutron poison includes a neutron irradiator, a neutron radiographic image capturing unit 6 and an image determiner 7. The neutron irradiator includes a neutron source 2, a moderator 1 and a collimator 4. The neutron radiographic image capturing unit 6 captures a neutron radiographic image in the fuel to be inspected that is irradiated with neutrons by the neutron irradiator. The image determiner 7 determines the presence of lumps of neutron poison of a prescribed size or larger on the basis of the dispersion in the luminance of the neutron radiographic image captured by the neutron radiographic image capturing unit 6, for example, whether the difference in the local luminance to an approximate curve of the luminance of the neutron radiographic image is larger than a certain threshold.
    • 要解决的问题:当检测分散在燃料中的中子毒素的均匀性时,检测出较小的中子毒物块的存在。解决方案:检查待检查的燃料5中的中子毒物的均匀性的中子毒素均匀性检查装置 含有中子毒物的物质包括中子照射器,中子射线照相图像捕获单元6和图像确定器7.中子辐射器包括中子源2,调节器1和准直器4.中子射线照相图像捕获单元6捕获中子射线照相 通过中子照射器照射中子的被检查燃料中的图像。 图像确定器7基于由中子射线照相图像捕获单元6捕获的中子射线照相图像的亮度的色散,确定规定大小的中子块的存在,例如, 中子射线照相图像的亮度的近似曲线的局部亮度大于特定阈值。
    • 3. 发明专利
    • Method and device for measuring intensity distribution of gamma ray
    • 用于测量伽马射线强度分布的方法和装置
    • JP2011002406A
    • 2011-01-06
    • JP2009147308
    • 2009-06-22
    • Toshiba Corp株式会社東芝
    • KUMANOMIDO HIRONORIYOSHIOKA KENICHIGUNJI SATOSHISUGAWARA SATOSHI
    • G21C17/07G01T1/167G01T1/29
    • PROBLEM TO BE SOLVED: To shorten a time for measuring the intensity distribution of gamma rays in a fuel conjugant.SOLUTION: A turn process for turning the fuel conjugant 11 to a certain measurement angle and a measurement process for measuring the intensity of the gamma rays passing through collimators 14 whose distances from a plane 34 are different by a gamma-ray detector 15 are repeated. Then, the intensity distribution of gamma rays in fuel rods located outside a circle whose radius is the longest distance between the plane 34 and the collimators 14 and whose center is the rotation axis 33 is calculated on the basis of the intensity of the gamma rays measured at a measurement angle of fuel rods more than those located outside the circle. Thereafter, the intensity distribution of the gamma rays in the fuel rods which are located outside a circle whose radius is the second longest distance between the plane 34 and the collimators 14 and where the intensity of gamma rays is not calculated is calculated on the basis of the intensity of the gamma rays measured at a measurement angle of the fuel rods more than the fuel rods 12 and the intensity of the gamma rays that has already been calculated.
    • 要解决的问题:缩短用于测量燃料共轭体中的γ射线的强度分布的时间。解决方案:将燃料共轭体11转动到一定的测量角度的转弯过程和用于测量伽马射线强度的测量过程 重复通过准直器14的距离,其平面34的距离不同于伽马射线检测器15。 然后,基于测量的伽马射线的强度来计算位于外侧的燃料棒中的伽马射线的强度分布,其半径是平面34与准直器14之间的最长距离,其中心是旋转轴33的距离 燃料棒的测量角度大于位于圆周外的燃料棒的测量角度。 此后,基于在平面34与准直仪14之间的半径为第二最长距离的圆的外侧的燃料棒中的伽马射线的强度分布,并且其中伽马射线的强度未计算的伽马射线的强度分布基于 在燃料棒的测量角度处测量的伽马射线的强度大于燃料棒12的强度和已经计算出的伽马射线的强度。
    • 4. 发明专利
    • Nuclear characteristic calculation result correction device and correction method
    • 核特性计算结果校正装置和校正方法
    • JP2014153285A
    • 2014-08-25
    • JP2013025008
    • 2013-02-12
    • Toshiba Corp株式会社東芝
    • UMANO TAKUYAYOSHIOKA KENICHISUGAWARA SATOSHI
    • G21C17/00
    • PROBLEM TO BE SOLVED: To set a safety tolerance rationally balancing safety and economical efficiency of spent nuclear fuel by rationally performing quantitative evaluation of an uncertainty included in a calculated value of reactivity of the spent nuclear fuel.SOLUTION: A nuclear characteristic calculation result correction device includes: a cross-sectional area covariance error matrix computing section 114 for computing an uncertainty by an input value; an objective system sensitivity coefficient vector computing section 116 for computing a sensitivity for the input value; an experimental system sensitivity coefficient vector computing section 115 for computing a sensitivity in an experimental system; a simulation property evaluation factor computing section 118; a linear coupling constant computing section 117; a cross-sectional area causing uncertainty estimation section 120 for calculating an uncertainty caused by the reaction cross-sectional area by using a conversion factor r which is a comparison between an experimental result and a computation result; an atom density causing physical quantity uncertainty computing section 123 for calculating an uncertainty of an atom density; and a physical quantity calculation result correction section 126 for correcting a calculation result of the objective system.
    • 要解决的问题:通过合理地对废核燃料的反应性计算值中包含的不确定度进行合理的定量评估,合理平衡安全性和经济效益的安全公差。解决方案:核特性计算结果校正装置 包括:用于通过输入值计算不确定性的横截面积协方差误差矩阵计算部114; 用于计算输入值的灵敏度的客观系统灵敏度系数向量计算部分116; 用于计算实验系统中的灵敏度的实验系统灵敏度系数向量计算部分115; 模拟特性评估因子计算部分118; 线性耦合常数计算部117; 导致不确定性估计部分120的横截面区域,用于通过使用作为实验结果和计算结果之间的比较的转换因子r来计算由反应横截面积引起的不确定性; 用于计算原子密度的不确定性的原子密度引起物理量不确定性计算部123; 以及用于校正目标系统的计算结果的物理量计算结果校正部分126。
    • 5. 发明专利
    • Failed fuel inspection device and failed fuel inspection method
    • 燃油检查装置故障和燃油检查方法失效
    • JP2014020894A
    • 2014-02-03
    • JP2012159294
    • 2012-07-18
    • Toshiba Corp株式会社東芝
    • KUMANOMIDO HIRONORISUGAWARA SATOSHI
    • G21C17/07
    • PROBLEM TO BE SOLVED: To enable a failed fuel inspection for detecting a radiation leak in a spent fuel aggregate without lifting up the spent fuel aggregate.SOLUTION: A failed fuel inspection device 100 for inspecting presence/absence of a failure in fuel rods in each spent fuel aggregate 10 sunk under cooling water includes: sipper caps 51 removably mounted on the upper parts of the spent fuel aggregates 10 and forming spaces where the upper parts of the spent fuel aggregates 10 are closed; heating rods 41 penetrating the sipper caps 51, inserted to gaps between the fuel rods, and performing heating in the spent fuel aggregates 10; sampling pipes 52 penetrating the sipper caps 51 and deriving gas from upper spaces; and an inspection unit 50 for detecting a radioactive material in gas taken out by the sampling pipes 52.
    • 要解决的问题:使燃料检查失败,用于检测乏燃料骨料中的辐射泄漏,而不提起废燃料骨料。解决方案:一种用于检查每个燃料棒中燃料棒故障存在/不存在的故障燃料检查装置100 在冷却水下沉没的乏燃料集料10包括:可拆卸地安装在乏燃料集料10的上部的吸嘴盖51和废燃料聚集体10的上部部分关闭的成形空间; 加热棒41穿过插入到燃料棒之间的间隙的吸嘴盖51,并在废燃料聚集体10中进行加热; 取样管52穿透吸嘴帽51并从上部空间导出气体; 以及检测单元50,用于检测由取样管52取出的气体中的放射性物质。
    • 6. 发明专利
    • Quality evaluation device and quality evaluation method
    • 质量评估设备和质量评估方法
    • JP2013020386A
    • 2013-01-31
    • JP2011152247
    • 2011-07-08
    • Toshiba Corp株式会社東芝
    • UMANO TAKUYAMATSUMIYA KOJISUGAWARA SATOSHI
    • G06F19/00
    • PROBLEM TO BE SOLVED: To evaluate quality of a distribution amount obtained by setting a parameter necessary for calculation and by simulating a real machine system and validity of the parameter used from a measured value obtained by an experiment.SOLUTION: A quality evaluation device 10 comprises: a calculated value and measured value distribution amount relative difference operated value storage section 16 for calculating and storing a relative difference between a calculated value of a physical quantity that is a distribution amount obtained by a simulation of an experiment and a measured value obtained by the experiment; an experiment system sensitivity coefficient vector operation storage section 17 and a real machine system sensitivity coefficient vector operation storage section 18 for calculating and storing a sensitivity coefficient vector representing sensitivity with respect to a change of a value input to a model as a result that an experiment system and a real machine system are individually simulated by using the model; a covariance error matrix operation storage section 19 for calculating and storing a covariance error matrix representing a relation of an uncertainty rate of the value input to the model for a simulation; a simulation evaluation factor operation storage section 20 for evaluating a simulation evaluation factor for the real machine system and the experiment system; and a distribution amount relative difference determining section 21 and a simulation evaluation factor determining section 22.
    • 要解决的问题:通过设置计算所必需的参数以及通过模拟实际机器系统和从通过实验获得的测量值所使用的参数的有效性来评估分配量的质量。 解决方案:质量评估装置10包括:计算值和测量值分配量相对差分操作值存储部分16,用于计算和存储作为由a获得的分配量的物理量的计算值之间的相对差 实验模拟和实验得到的测量值; 实验系统灵敏度系数向量运算存储部分17和实际机器系统灵敏度系数向量运算存储部分18,用于计算和存储表示对输入到模型的值的变化的灵敏度的灵敏度系数向量,结果是实验 系统和实机系统通过使用模型进行单独模拟; 一个协方差误差矩阵运算存储部分19,用于计算和存储一个协方差误差矩阵,该协方差误差矩阵表示输入的值的不确定度与模拟模型的不确定度的关系; 用于评估真实机器系统和实验系统的模拟评估因子的模拟评估因子运算存储部分20; 和分配量相对差确定部分21和模拟评估因子确定部分22。版权所有(C)2013,JPO&INPIT
    • 7. 发明专利
    • Fuel assembly and fuel rod
    • 燃油组件和燃油
    • JP2012112841A
    • 2012-06-14
    • JP2010262768
    • 2010-11-25
    • Toshiba Corp株式会社東芝
    • WATANABE SHOICHIMITSUHASHI ISHIKUMANOMIDO HIRONORISUGAWARA SATOSHI
    • G21C3/328G21C3/326G21C3/62
    • Y02E30/31Y02E30/32Y02E30/38
    • PROBLEM TO BE SOLVED: To provide a fuel assembly improving an effect of neutron shielding or heat removal at the time of cask storage, so as to transport and store a MOX spent fuel by a cask which is conventionally used.SOLUTION: A fuel assembly has a plurality of MOX fuel rods; and an upper tie plate, a lower tie plate and the like for binding the MOX fuel rods. Each MOX fuel rod comprises a cladding tube, a lower end plug for sealing a lower end of the cladding tube, an upper end plug for sealing an upper end of the cladding tube, and a plurality of fuel pellets sealed in the cladding tube between the lower end plug and the upper end plug, aligned in a vertical direction, and composed of a plurality of uranium fuel pellets and the a plurality of a MOX fuel pellets. A uranium fuel pellet sealing portion 71 is formed at least at a lower end and near the lower end of the MOX fuel rod, and a MOX fuel pellet sealing portion 72 is formed at other position.
    • 要解决的问题:提供一种改进在储存仓储时中子屏蔽或除热效果的燃料组件,以便通过常规使用的桶运输和存储MOX乏燃料。 解决方案:燃料组件具有多个MOX燃料棒; 以及用于结合MOX燃料棒的上连接板,下连接板等。 每个MOX燃料棒包括包层管,用于密封包层管的下端的下端塞,用于密封包层管的上端的上端塞,以及密封在包层管中的多个燃料颗粒 下端塞和上端塞沿垂直方向对准,并由多个铀燃料颗粒和多个MOX燃料颗粒组成。 至少在MOX燃料棒的下端和下端形成有铀燃料粒子密封部71,在其他位置形成MOX燃料粒子密封部72。 版权所有(C)2012,JPO&INPIT
    • 8. 发明专利
    • Fuel assembly storing method and fuel assembly storage body
    • 燃油组装储存方法和燃油组装储存体
    • JP2012112834A
    • 2012-06-14
    • JP2010262738
    • 2010-11-25
    • Toshiba Corp株式会社東芝
    • WATANABE SHOICHIMITSUHASHI ISHIKUMANOMIDO HIRONORISUGAWARA SATOSHI
    • G21C19/32G21F5/10G21F9/36
    • PROBLEM TO BE SOLVED: To increase an effect of neutron shielding or heat removal so as to transport and store a MOX spent fuel by a cask which is conventionally used.SOLUTION: A basket forming a plurality of storage spaces aligned in a lattice shape is stored in a cask body, and spent fuel assembles are stored in each of the plurality of the storage spaces. A MOX spent fuel assembly 40 is stored in each storage space of a part of a plurality of center storage spaces except for the outermost peripheral storage space out of the plurality of the storage spaces. A uranium spent fuel assembly 41 is stored in each of a plurality of the storage spaces which do not store the MOX spent fuel assembles 40 out of the plurality of the storage spaces. The MOX spent fuel assemblies 40 are stored only in the storage spaces which are not adjacent to each other.
    • 要解决的问题:增加中子屏蔽或除热的效果,以便通过常规使用的桶运输和存储MOX乏燃料。 解决方案:将形成格子形状的多个存储空间的篮子存储在一个桶体中,并且废燃料组件被存储在多个存储空间的每一个中。 MOX废燃料组件40存储在多个中心存储空间的除了多个存储空间中的最外围存储空间之外的一部分的每个存储空间中。 铀废燃料组件41存储在多个存储空间中的每个不将多个存储空间中存储MOX乏燃料组件40的存储空间中。 MOX废燃料组件40仅存储在彼此不相邻的存储空间中。 版权所有(C)2012,JPO&INPIT
    • 9. 发明专利
    • 設計計算結果補正装置および設計計算結果補正方法
    • 用于校正设计计算结果的装置和方法
    • JP2014229283A
    • 2014-12-08
    • JP2013111336
    • 2013-05-27
    • 株式会社東芝Toshiba Corp
    • UMANO TAKUYAYOSHIOKA KENICHISUGAWARA SATOSHI
    • G06F17/50G21C17/06
    • 【課題】シミュレーションで得られた計算値に含まれる計算誤差や計算の不確かさを定量評価して計算値を補正する。【解決手段】実施形態による設計計算結果補正装置は、相対誤差Epを演算する計算値・測定値相対誤差演算部112と、入力パラメータ共分散誤差行列WCを演算する入力パラメータ共分散誤差行列演算部114と、目的体系感度係数ベクトルSRを演算する目的体系感度係数ベクトル演算部116と、模擬実験の体系について入力値の単位変化に対する前記物理量の変化量を表す実験体系感度係数ベクトルSEを演算する実験体系感度係数ベクトル演算部115と、入力パラメータ起因物理量不確かさERPを算出する目的体系物理量不確かさ演算部120と、補正後の計算値を算出する目的体系物理量計算値補正部121と、を有する。【選択図】図1
    • 要解决的问题:通过定量评估包含在通过模拟获得的计算值中的计算值的计算误差和不确定性来校正计算值。解决方案:根据实施例的设计计算结果校正装置包括:计算值/测量值相对 用于计算相对误差E的误差计算单元112; 用于计算输入参数协方差误差矩阵WC的输入参数协方差误差矩阵计算单元114; 目的系统灵敏度系数向量计算单元116,用于计算目的系统灵敏度系数向量S; 实验系统灵敏度系数向量计算单元115,用于计算实验系统灵敏度系数向量S表示物理量的变化量与关于模拟系统的输入值的单位变化; 用于计算输入参数原始物理量不确定度ERP的目的系统物理量不确定度计算单元120; 以及用于计算校正后的计算值的目的系统物理量计算值校正单元121。
    • 10. 发明专利
    • Critical experiment device and simulation moderator
    • 关键实验装置和模拟调节器
    • JP2013072766A
    • 2013-04-22
    • JP2011212333
    • 2011-09-28
    • Toshiba Corp株式会社東芝
    • UMANO TAKUYASUGAWARA SATOSHI
    • G21C17/00G21C17/06
    • PROBLEM TO BE SOLVED: To simulate a state of a high void ratio present at an axial upper part of a BWR by a critical experiment device while maintaining safety.SOLUTION: The critical experiment device includes: a reactor core tank storing light water; an upper lattice plate and a lower lattice plate for supporting a plurality of fuel rods; and a void box 100 which is disposed in the light water of the reactor core tank in order to simulate a two-phase region of a moderator material, and has a hollow structure that the fuel rods pass through. The void box 100 is installed at an upper part of a position equivalent to a reactor core. Also, the void box 100 includes a plurality of fuel guide pipes 101 to which the fuel rods are inserted, a side plate 102, an upper end plate and a lower end plate, and forms one sealed space by the fuel guide pipes 101 and the side plate 102. The inside of the sealed space is partitioned by a vertical partition plate 201, and it is divided into a plurality of division sealed spaces further. In the division sealed space, a vacuolar body may be arranged for instance.
    • 要解决的问题:通过关键的实验装置模拟在BWR轴向上部存在的高空隙率的状态,同时保持安全性。 解决方案:关键实验装置包括:储存轻水的反应堆堆芯罐; 用于支撑多个燃料棒的上格栅板和下格栅板; 以及设置在反应堆堆芯罐的轻水中以便模拟减速材料的两相区域并具有燃料棒通过的中空结构的空壳体100。 空隙箱100安装在与反应堆芯相当的位置的上部。 此外,空隙箱100包括燃料棒插入的多个燃料导管101,侧板102,上端板和下端板,并且通过燃料导管101形成一个密封空间 密封空间的内部由垂直隔板201分隔开,并分成多个分隔密封空间。 在分隔密封空间中,可以例如布置液泡体。 版权所有(C)2013,JPO&INPIT