会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 14. 发明专利
    • Welding structure and welding method
    • 焊接结构与焊接方法
    • JP2014104487A
    • 2014-06-09
    • JP2012259715
    • 2012-11-28
    • Mitsubishi Heavy Ind Ltd三菱重工業株式会社
    • HIRATA TAKEHIKO
    • B23K9/028B23K9/00B23K9/167B23K9/173B23K9/23C22C38/00C22C38/04
    • PROBLEM TO BE SOLVED: To provide a welding structure having an excellent corrosion resistance, low manufacturing costs, and a sufficient strength of a welding part, and a welding method for forming the welding structure.SOLUTION: A welding structure comprises a pair of tubular pipes 11, 12 having end surfaces opposed to each other and a welding part 20 where the end surfaces of the pipes are butt-welded. The welding part is provided on at least one of the radically inner side and the radially outer side of the pipes between the end surfaces and comprises a first welding part 21 made of a high purity steel material and a second welding part 22 provided in a region other than the first welding part between the end surfaces and made of a steel material having a lower purity than that of the first welding part.
    • 要解决的问题:提供具有优异的耐腐蚀性,低制造成本和足够的焊接部件的强度的焊接结构以及用于形成焊接结构的焊接方法。解决方案:焊接结构包括一对管状管 11,12具有彼此相对的端表面和焊接部20,其中管的端面对接焊接。 焊接部设置在端面的管的从根内侧和径向外侧的至少一个上,并且包括由高纯度钢材制成的第一焊接部21和设置在区域中的第二焊接部22 除了端面之间的第一焊接部分之外,并且由比第一焊接部件的纯度低的钢材制成。
    • 15. 发明专利
    • Operation control method for electric melting furnace
    • 电熔炉操作控制方法
    • JP2005249324A
    • 2005-09-15
    • JP2004061789
    • 2004-03-05
    • Mitsubishi Heavy Ind Ltd三菱重工業株式会社
    • HIRATA TAKEHIKOTERABE YASUNORIYOSHIDA MASAHIRO
    • F23J1/00B09B3/00C02F11/10F23J1/06F27B3/08F27B3/28F27D11/02F27D11/08F27D21/00
    • PROBLEM TO BE SOLVED: To provide an operation control method for an electric melting furnace, suppressing the generation of a side current with the accumulation of deposits and permitting smooth operation while easily removing the deposits when accumulated.
      SOLUTION: The operation control method is provided for the electric melting furnace 10 which has a main electrode 14 inserted into a furnace body 11 with the existence of a gap thereto and a furnace bottom electrode 15 arranged in opposition thereto for giving melting treatment to melted objects with the application of voltage between the electrodes. The melting furnace 10 has an ammeter 22 for detecting the side current generated with deposits precipitated on a furnace wall as volatilized materials suspended in the furnace are cooled. When the side current is detected, a furnace temperature is kept in a temperature region higher than in normal operation until reaching a preset threshold value.
      COPYRIGHT: (C)2005,JPO&NCIPI
    • 要解决的问题:提供电熔炉的操作控制方法,通过沉积物的积累来抑制侧电流的产生并且允许平稳操作,同时容易地在积累时去除沉积物。 解决方案:为具有插入到炉体11中的主电极14与其间存在间隙的电熔炉10和与其相对设置的炉底电极15提供熔融处理的操作控制方法 通过在电极之间施加电压来熔化物体。 熔化炉10具有电流计22,用于检测由于悬浮在炉中的挥发物质被冷却而沉淀在炉壁上的沉积物产生的侧电流。 当检测到侧电流时,炉温保持在高于正常操作的温度区域中,直到达到预设的阈值。 版权所有(C)2005,JPO&NCIPI
    • 16. 发明专利
    • Plasma ash melting furnace
    • 等离子熔融炉
    • JP2003083530A
    • 2003-03-19
    • JP2001276457
    • 2001-09-12
    • Mitsubishi Heavy Ind Ltd三菱重工業株式会社
    • HIRATA TAKEHIKOSAEKI KENTARONOMA AKIRAINOUE KEITA
    • F23J1/00F27B3/08F27B3/14F27D1/04H05B7/12
    • PROBLEM TO BE SOLVED: To provide a plasma ash melting furnace which can prevent the penetration of molten salt into space for insulation with simple structure, and can prevent the occurrence of a side current caused by bad insulation by minimizing the adhesion of molten salt to the inner wall of the furnace.
      SOLUTION: This plasma ash melting furnace has a tubular electrode 14 projected above the iron-made furnace body 12 whose inner wall is covered with refractory material 13, and an insulating sleeve 16 is arranged with a space in a section where the electrode pierces the furnace, and the space between that insulating sleeve 16 and the above electrode 14 is cleaved at plural stages of tilt angles inward of the furnace, and the space of that furnace piercing section has a molten salt retreat part made of the lower incline 16a of the above insulating sleeve, at a tilt angle of roughly 10° to 25° to the horizontal direction, and a gas stream release part made of an upper incline 16b at a tilt angle of roughly below 2° to the vertical direction, and the molten salt 23 arising by the fusion of ash flows down the above incline.
      COPYRIGHT: (C)2003,JPO
    • 要解决的问题:提供一种等离子体灰熔化炉,其能够以简单的结构防止熔融盐渗透到空间中用于绝缘,并且可以通过使熔融盐的粘合力最小化来防止由不良绝缘引起的侧电流的发生 炉内壁。 解决方案:这种等离子体灰熔化炉具有一个管状电极14,该管状电极14突出在铁制炉体12的上方,其内壁被耐火材料13覆盖,绝缘套管16在电极穿透炉的部分 并且绝缘套筒16与上述电极14之间的空间在炉内部的多个倾斜角度处被切割,并且该炉膛部分的空间具有由上述下倾斜部16a制成的熔盐回撤部分 绝缘套管,倾斜角约为10度。 至25度 以及以大致低于2度的倾斜角由上斜面16b制成的气流释放部。 并且由灰分熔化而产生的熔盐23沿着上述倾斜方向流下。
    • 20. 发明专利
    • PRODUCTION OF SILICON NITRIDE SINTERED COMPACT
    • JPH05163069A
    • 1993-06-29
    • JP32753191
    • 1991-12-11
    • MITSUBISHI HEAVY IND LTD
    • HIRATA TAKEHIKOAKIYAMA KATSUNORIYAMAMOTO HIROICHI
    • C04B35/584C04B35/58C04B35/591
    • PURPOSE:To obtain the subject sintered compact with high fracture toughness by molding a powder mixture comprising silicon nitride, sintering auxiliary, titanium dioxide and liquid carbon source followed by sintering in a nitrogen atmosphere. CONSTITUTION:A mixture is first prepared, comprising (A) 73.8-87.3wt.% of silicon nitride powder 0.3-1/mum mean particle diameter, (B) 8.2-9.7wt.% of a sintering auxiliary (e.g. yttria powder) 0.5-2mum in mean particle diameter, (C) 3.9-23wt.% of titanium dioxide powder 0.1-1 in mean particle diameter, and (D) 7-14wt.%, based on the titanium dioxide powder, of a liquid carbon source (e.g. phenolic resin with a solid content of 69.1wt.%). Specifically, each specified amount of the powder components is weighed and mixed in a mixer for ca.220hr. The liquid carbon source is then added to the mixture followed by mixing in the mixer for ca.48hr, and the resulting mixture is dried at ca.60 deg.C. Thence, the resulting powder is put to uniaxial pressure molding followed by CID molding into a form. This form is then heated 10 a vacuum at ca.500 deg.C or ca.1hr followed by heating at ca.1200 deg.C for ca.4hr in a nitrogen atmosphere at a pressure of ca.6kgf/cm and then sintering in the identical atmosphere at ca.1800-1950 deg.C for ca.4hr.