会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明公开
    • FLOW RATE METER AND FLOW RATE CONTROL SYSTEM USING THE SAME
    • STRÖMUNGSGESCHWINDIGKEITSMESSERUNDSTRÖMUNGSGESCHWINDIGKEITSSTEUERSYSTEMDAMIT
    • EP1890114A1
    • 2008-02-20
    • EP06731008.6
    • 2006-04-03
    • Surpass Industry Co., Ltd.
    • USHIGUSA, Yoshihiro, C/O Surpass Industry Co., LtdIGARASHI, Hiroki, C/O Surpass Industry Co., LtdHASUNUMA, Masahiro, C/O Surpass Industry Co., Ltd
    • G01F1/42G01F1/34G01F1/48G05D7/06
    • G05D7/0635G01F1/42G01F1/48Y10T137/7725Y10T137/87217
    • Provided are a flow meter and a flow-rate control system using the same that is capable of measuring a flow rate in a minute flow-rate region with excellent measurement accuracy by preventing or suppressing the generation of bubbles and in which accumulation of the fluid and the bubbles is less likely to occur. The flow meter is for measuring a minute flow rate of a fluid flowing through a fluid channel whose outlet environment is set to constant pressure, the flow meter including a flow-rate measurement conduit portion having a predetermined length connected to an outlet-side end of the fluid channel 1 and whose outlet environment is set to constant pressure by setting the cross-sectional area of a channel smaller than the fluid channel; a pressure sensor for detecting the pressure of the fluid at the upstream side of the flow-rate measurement conduit portion by being disposed near an outlet of the fluid channel 1; and a pressure-detection control unit 4 for calculating a flow rate from a fluid pressure detected at the pressure detection part.
    • 提供一种流量计和流量控制系统,其使用该流量计和流量控制系统,其能够通过防止或抑制气泡的产生来测量具有优异的测量精度的微小流量区域中的流量,并且其中流体和 气泡不太可能发生。 所述流量计用于测量流过流出通道的流体的微小流量,所述流体通道的出口环境设定为恒定压力,所述流量计包括具有预定长度的流量测量导管部分, 流体通道1的出口环境通过将通道的横截面积设定为小于流体通道而设定为恒定压力; 压力传感器,用于通过设置在流体通道1的出口附近来检测流量测量导管部分的上游侧的流体的压力; 以及压力检测控制单元4,用于根据在压力检测部分检测到的流体压力来计算流量。
    • 2. 发明授权
    • MICROVOLUME LIQUID HANDLING SYSTEM
    • 微流体液体处理系统
    • EP1007973B1
    • 2004-12-01
    • EP98915459.6
    • 1998-04-08
    • Packard Instrument Company, Inc.
    • PELC, Richard, E.CHIBUCOS, Nicholas, S.PAPEN, Roeland, F.MAYER, Wilhelm
    • G01N35/10B01L3/02
    • G01N35/1016B01J2219/00378C40B60/14G01F1/48G01F3/00G01N2035/00237G01N2035/1018G01N2035/1025G01N2035/1039G01N2035/1041
    • A microvolume liquid handling system includes a microdispenser employing a piezoelectric transducer attached to a glass capillary, a positive displacement pump for priming and aspirating transfer liquid into the microdispenser, controlling the pressure of the liquid system, and washing the microdispenser between liquid transfers, and a pressure sensor to measure the liquid system pressure and produce a corresponding electrical signal. The pressure signal is used to verify and quantify the microvolume of transfer liquid dispensed and is used to perform automated calibration and diagnostics on the microdispenser. In another embodiment of the microvolume liquid handling system, a system reservoir is connected with tubing to a pressure control system for controlling the liquid system pressure in the system reservoir. The system reservoir is coupled to one or more microdispensers through a distribution tube having a branched section for each microdispenser. In this embodiment, each microdispenser is coupled to its own flow sensor and to enable a system controller to respectively measure and control the flow of liquid in the each microdispenser. Dispensing of a single sub-nanoliter drop can be detected in real time. As the result of dispensing the liquid in sub-nanoliter droplets, the dispensed volume can be precisely controlled. The dispenser automatically detects the liquid surface of the transfer liquid, automatically aspirate, analyze desired volume of the transfer liquid, dispense the transfer liquid without contacting the destination vessel or its contents, and automatically wash off the transfer liquid from dispensing system after each transfer. This system is capable of automatically sensing liquid surfaces, aspirating liquid to be transferred, and then dispensing small quantities of liquid with high accuracy, speed and precision. The system is pulsated at high frequency to prevent or eliminate clogging. Immiscible liquid between the transfer liquid and the system liquid reduces the required amount of transfer liquid needed for dispensing.
    • 微量液体处理系统包括使用连接至玻璃毛细管的压电换能器的微分配器,用于将转移液体灌注并吸入微量分配器中的正排量泵,控制液体系统的压力以及在液体转移之间清洗微分配器, 压力传感器来测量液体系统压力并产生相应的电信号。 压力信号用于验证和量化分配的转移液体的微量,并用于对微分配器进行自动校准和诊断。 在微体积液体处理系统的另一个实施例中,系统容器通过管连接到用于控制系统容器中的液体系统压力的压力控制系统。 系统贮存器通过具有用于每个微分配器的分支部分的分配管与一个或多个微分配器连接。 在该实施例中,每个微分配器耦合到其自己的流量传感器并且使系统控制器能够分别测量和控制每个微分配器中的液体流量。 可以实时检测单次亚纳升滴的分配。 由于以亚纳升液滴分配液体,可以精确控制分配体积。 分配器自动检测转印液体的液面,自动吸取,分析转印液体的所需体积,分配转印液体而不接触目的容器或其内容物,并在每次转印后自动从分配系统清洗转印液体。 该系统能够自动检测液体表面,吸取要传送的液体,然后以高精度,高速度和精确度分配少量液体。 系统以高频脉动,以防止或消除堵塞。 转印液体和系统液体之间的不混溶液体减少了分配所需的转印液体量。
    • 7. 发明公开
    • Method and apparatus for measuring and controlling volumetric flow rate of gases in a line
    • 用于测量和控制气体中的管的体积流量的方法和装置。
    • EP0069173A1
    • 1983-01-12
    • EP81302921.2
    • 1981-06-29
    • BADGER METER, INC.
    • Kennedy, Lyn Richards
    • G01F1/36
    • G01F1/48G01F1/363
    • Disclosed is a method and apparatus for measuring and controlling volumetric flow rate of gases, and especially for delivering gases at a selected and measured volumetric flow rate. The apparatus includes a measurement chamber (14) of fixed volume in a flow line (11), a controllable inlet valve (15) upstream from the chamber, and flow regulator means (12, 13) for establishing constant flow output downstream from the chamber. Also provided are measuring and control equipment including a pressure sensor (16) in the chamber, means (17) for controlling operation of the inlet valve, timing means, and means for calculating volumetric flow rate. The method involves closing the inlet valve at a chosen time for a selected interval, to interrupt flow into the measurement chamber, while maintaining constancy of flow out of the chamber. During at least part of the interval in which the inlet valve is closed, the pressure decrease is measured, and the rate of pressure decrease is calculated by dividing the measured pressure drop by the time measured by the timing means. The thus calculated rate of fall of pressure is directly related to the volumetric flow rate, which is thus determined. If the nature of the gas and the flow conditions are such that the supercompressibility of the gas should be taken into account, rate of pressure fall is determined at two time intervals. If the two rates are the same, no correction is needed. If they differ, a supercompressibility correction factor is applied to the calculation of rate of pressure fall.
    • 公开的是用于测量和控制气体的体积流率,和爱尤其用于在选择和测量的体积流动速率递送气体的方法和装置。 该装置包括一个流动管线(11),可控制的入口阀(15),其固定容积的测量腔(14)上游的腔室,和流量调节器装置(12,13),用于从所述腔室下游建立恒定流量输出 , 这样提供了用于控制操作所述入口阀的,定时装置被测量和控制设备,包括在所述腔室的装置(17)的压力传感器(16),以及用于计算体积流量。 该方法包括关闭所述入口阀在一选定的时间间隔选择的时间,以中断流入测量室,同时保持流量恒定的流出腔室。 在其中入口阀被关闭的时间间隔的至少一部分,所述压力减小被测量,并且压力下降率除以由定时装置测量的时间所测量的压降来计算。 的压力下降的这样计算出速率直接相关的体积流动速率,在所有其因此确定性开采。 如果被检查并在气体的超压缩应考虑到,速率压力降的气体和流动条件的性质确定的开采在两个时间间隔。 如果这两个利率都是一样的,不需要校正。 如果他们分开,一个超压缩校正因子应用到压降率的计算。