会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明公开
    • Silicon Drift Detector for use in a charged particle apparatus
    • 硅漂移探测器用于带电粒子仪器
    • EP2544026A1
    • 2013-01-09
    • EP12173975.9
    • 2012-06-28
    • FEI COMPANY
    • Kooijman, CeesVan Veen, Gerard
    • G01T1/24H01J37/244H01L31/115
    • G01T1/24G01T1/2928H01J37/244H01J37/261H01J37/28H01J2237/24415H01J2237/2448H01L31/115
    • The invention relates to a detector with a Silicon Drift Diode (SDD) ( 10 , 200) for use in a charged particle apparatus. Such detectors are well-known for the detection of X-rays, but are not capable to detect secondary or backscattered electrons for two reasons:
      1. the volume (20) in the SDD where electron/hole pairs must be generated is too far removed from the surface ( 18 ). This can be solved by known techniques resulting in a shallow layer, for example using thin boron layers.
      2. Secondary and/or backscattered electrons are generated with a much higher efficiency than X-rays, as a result of which the current of backscattered electrons is typically too high to be detected due to the limited count rate of a SDD (typically up to 1 Mc/s, equivalent to a maximum electron current of up to 0.16 pA).
      The invention describes a detector with a SDD ( 200 ) and an amplifier (206), and a feed-back element in the form of, for example, a resistor (208) or a diode, switchably connected to the output of the amplifier. When the feedback element is selected via a switch (209), the detector operates in a Current Measurement Mode for determining electron current, and when the element is not selected the detector operates in its well-known Pulse Height Measurement Mode for determining the energy of X-ray quanta.
    • 本发明涉及一种用于带电粒子装置的具有硅漂移二极管(SDD)(10,200)的检测器。 这种探测器众所周知用于检测X射线,但由于以下两个原因而不能检测二次或背散射电子:1. SDD中必须产生电子/空穴对的体积(20)太远 从表面(18)开始。 这可以通过导致浅层的已知技术来解决,例如使用薄硼层。 2.以比X射线高得多的效率产生次级和/或背散射电子,结果背散射电子的电流通常太高而不能被检测,这是由于SDD的有限计数率(通常高达 1 Mc / s,相当于最大电子电流高达0.16 pA)。 本发明描述了具有SDD(200)和放大器(206)的检测器以及可切换地连接到放大器的输出端的形式为例如电阻器(208)或二极管的反馈元件。 当通过开关(209)选择反馈元件时,检测器以电流测量模式操作以确定电子电流,并且当元件未被选择时,检测器以其众所周知的脉冲高度测量模式操作以确定 X射线量子。
    • 2. 发明公开
    • Charged-particle microscopy imaging method
    • Mikroskopiebildgebungsverfahren mit geladenen Teilchen
    • EP2557586A2
    • 2013-02-13
    • EP12179763.3
    • 2012-08-09
    • FEI COMPANY
    • Boughorbel, FaysalLich, BenKooijman, CeesBosch, EricDe Jong, Frank
    • H01J37/22H01J37/28
    • H01J37/222G01N23/22G01N2223/423H01J37/28H01J2237/226
    • A method of investigating a sample using charged-particle microscopy, comprising the following steps:
      - Irradiating a surface of the sample using a probing beam of charged particles in a plurality (N) of measurement sessions, each measurement session having an associated beam parameter (P) value that is chosen from a range of such values and that differs between measurement sessions;
      - Detecting stimulated radiation emitted by the sample during each measurement session, associating a measurand (M) therewith and noting the value of this measurand for each measurement session, thus allowing compilation of a data set (S) of data pairs {P n , M n }, where n is an integer in the range 1 ≤ n ≤ N,

      wherein a mathematical technique is employed to automatically process the data set (S) in a manner that comprises the following steps:
      - Defining a Point Spread Function (K) that, for each value of n, has a kernel value K n representing the behavior of the probing beam in a bulk of the sample for beam parameter value P n ;
      - Defining a spatial variable (V) that represents a physical property (O) of the sample as a function of position in its bulk;
      - Defining an imaging quantity (Q) that, for each value of n, has a value Q n that is a three-dimensional convolution of K n and V, such that Q n = K n * V;
      - For each value of n, computationally determining a minimum divergence

      between M n and Q n , wherein one solves for V while applying constraints on the values K n .
    • 一种使用带电粒子显微镜研究样品的方法,包括以下步骤: - 在多个(N)个测量会话中使用带电粒子的探测光束照射样品的表面,每个测量会话具有相关的光束参数( P)值,其从这样的值的范围中选择并且在测量会话之间不同; - 检测在每个测量会话期间由样本发射的受激辐射,将被测量(M)与其相关联并注意每个测量会话的该被测量的值,从而允许编译数据对{P n,M n},其中n是1‰¤n‰N的整数,其中采用数学技术来以包括以下步骤的方式自动处理数据集(S): - 定义点扩展函数( K),对于n的每个值,具有表示用于波束参数值P n的样本的大部分中的探测光束的行为的核值K n; - 定义表示样本的物理属性(O)的空间变量(V),作为其体积中位置的函数; - 定义对于n的每个值具有作为K n和V的三维卷积的值Q n的成像量(Q),使得Q n = K n * V; - 对于n的每个值,计算确定M n和Q n之间的最小发散度,其中一个解决V,同时对值K n施加约束。
    • 3. 发明公开
    • Charged-particle microscopy imaging method
    • 带电粒子显微成像方法
    • EP2557584A1
    • 2013-02-13
    • EP11177091.3
    • 2011-08-10
    • FEI COMPANY
    • Boughorbel, FaysalLich, BenKooijman, CeesBosch, EricDe Jong, Frank
    • H01J37/22H01J37/28
    • H01J37/222G01N23/22G01N2223/423H01J37/28H01J2237/226
    • A method of investigating a sample using charged-particle microscopy, comprising the following steps:
      - Irradiating a surface of the sample using a probing beam of charged particles in a plurality (N) of measurement sessions, each measurement session having an associated beam parameter (P) value that is chosen from a range of such values and that differs between measurement sessions;
      - Detecting stimulated radiation emitted by the sample during each measurement session, associating a measurand (M) therewith and noting the value of this measurand for each measurement session, thus allowing compilation of a data set (S) of data pairs {P n , M n }, where n is an integer in the range 1 ≤ n ≤ N,

      wherein a mathematical technique is employed to automatically process the data set (S) in a manner that comprises the following steps:
      - Defining a Point Spread Function (K) that, for each value of n, has a kernel value K n representing the behavior of the probing beam in a bulk of the sample for beam parameter value P n ;
      - Defining a spatial variable (V) that represents a physical property (O) of the sample as a function of position in its bulk;
      - Defining an imaging quantity (Q) that, for each value of n, has a value Q n that is a multi-dimensional convolution of K n and V, such that Q n = K n * V;
      - For each value of n, computationally determining a minimum divergence min D M n ‖ K n * V
      between M n and Q n , wherein one solves for V while applying constraints on the values Kn.
    • 一种使用带电粒子显微镜检查样本的方法,包括以下步骤: - 在多个(N)测量会话中使用带电粒子的探测束来辐射样本的表面,每个测量会话具有关联的射束参数( P)值从一系列这样的值中选择并且在测量会话之间不同; - 在每个测量会话期间检测由样本发出的受激辐射,将被测量(M)与其关联,并且针对每个测量会话记录该被测量的值,从而允许编译数据对{Pn,Mn} ,其中n是1≤n≤N范围内的整数,其中采用数学方法以包括以下步骤的方式自动处理数据集(S): - 定义点扩散函数(K),其中, 对于n的每个值,具有代表针对波束参数值Pn的样本的体中的探测光束的行为的核值Kn; - 定义代表样品物理性质(O)的空间变量(V)作为其体积位置的函数; - 定义对于每个n的值具有作为Kn和V的多维卷积的值Qn的成像量(Q),使得Qn = Kn * V; - 对于n的每个值,通过计算确定Mn和Qn之间的最小发散度最小值DMn‖Kn* V,其中在对值K n施加限制时求解V.
    • 8. 发明公开
    • Silicon Drift Detector for use in a charged particle apparatus
    • 西班牙语中的Siliziumdriftdetektor zur Verwendung Vilrichtungfürgeladene Teilchen
    • EP2544025A1
    • 2013-01-09
    • EP11172955.4
    • 2011-07-07
    • FEI Company
    • Kooijman, CeesVan Veen, Gerard
    • G01T1/24H01J37/244H01L31/115
    • G01T1/24G01T1/2928H01J37/244H01J37/261H01J37/28H01J2237/24415H01J2237/2448H01L31/115
    • The invention relates to a detector with a Silicon Drift Diode (SDD) ( 10 , 200) for use in a charged particle apparatus. Such detectors are well-known for the detection of X-rays, but are not capable to detect secondary or backscattered electrons for two reasons:
      1. the volume (20) in the SDD where electron/hole pairs must be generated is too far removed from the surface ( 18 ). This can be solved by known techniques resulting in a shallow layer, for example using thin boron layers.
      2. Secondary and/or backscattered electrons are generated with a much higher efficiency than X-rays, as a result of which the current of backscattered electrons is typically too high to be detected due to the limited count rate of a SDD (typically up to 1 Mc/s, equivalent to a maximum electron current of up to 0.16 pA).
      The invention describes a detector with a SDD ( 200 ) and an amplifier (206), and a feed-back element in the form of, for example, a resistor (208) or a diode, switchably connected to the output of the amplifier. When the feedback element is selected via a switch (209), the detector operates in a Current Measurement Mode for determining electron current, and when the element is not selected the detector operates in its well-known Pulse Height Measurement Mode for determining the energy of X-ray quanta.
    • 本发明涉及一种用于带电粒子装置的具有硅漂移二极管(SDD)(10,200)的检测器。 这种检测器是众所周知的,用于检测X射线,但不能检测次级或反向散射电子的原因有两个:1. SDD中必须产生电子/空穴对的体积(20)太远, 从表面(18)。 这可以通过已知的技术来解决,从而产生浅层,例如使用薄硼层。 二次和/或反向散射电子以比X射线高得多的效率产生,其结果是后向散射电子的电流通常太高以致不能被检测到,这是由于SDD的计数率有限(通常高达 1 Mc / s,相当于最大电子电流高达0.16 pA)。 本发明描述了具有SDD(200)和放大器(206)的检测器,以及例如可切换地连接到放大器的输出端的电阻器(208)或二极管形式的反馈元件。 当通过开关(209)选择反馈元件时,检测器以用于确定电子电流的电流测量模式操作,并且当元件未被选择时,检测器以其公知的脉冲高度测量模式操作,以确定 X射线量子。