会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 47. 发明公开
    • METAL OXIDE TFT WITH IMPROVED SOURCE/DRAIN CONTACTS
    • 金属氧化物薄膜晶体管,改善源/漏极接触
    • EP2715786A1
    • 2014-04-09
    • EP12796733.9
    • 2012-05-16
    • CBrite Inc.
    • SHIEH, Chan-longYU, GangFOONG, Fatt
    • H01L21/36H01L21/44H01L21/465
    • H01L29/7869H01L21/428H01L29/45H01L29/66969H01L29/78606
    • A method of forming ohmic source/drain contacts in a metal oxide semiconductor thin film transistor includes providing a gate, a gate dielectric, a high carrier concentration metal oxide semiconductor active layer with a band gap and spaced apart source/drain metal contacts in a thin film transistor configuration. The spaced apart source/drain metal contacts define a channel region in the active layer. An oxidizing ambient is provided adjacent the channel region and the gate and the channel region are heated in the oxidizing ambient to reduce the carrier concentration in the channel area. Alternatively or in addition each of the source/drain contacts includes a very thin layer of low work function metal positioned on the metal oxide semiconductor active layer and a barrier layer of high work function metal is positioned on the low work function metal.
    • 一种在金属氧化物半导体薄膜晶体管中形成欧姆源极/漏极接触的方法包括提供具有带隙的栅极,栅极电介质,高载流子浓度金属氧化物半导体有源层以及间隔开的薄膜晶体管 薄膜晶体管配置。 间隔开的源极/漏极金属触点在有源层中限定沟道区域。 在沟道区域附近提供氧化环境,并且在氧化环境中加热栅极和沟道区域以降低沟道区域中的载流子浓度。 可选地或附加地,每个源极/漏极接触件包括位于金属氧化物半导体活性层上的非常薄的低功函数金属层,并且具有高功函数金属的阻挡层位于低功函数金属上。
    • 50. 发明公开
    • METHOD FOR PRODUCING SILICON CARBIDE SEMICONDUCTOR DEVICE
    • 制造碳化硅半导体器件的方法
    • EP2698807A1
    • 2014-02-19
    • EP11863268.6
    • 2011-09-09
    • Shindengen Electric Manufacturing Co., Ltd.
    • OHNO, Jun-ichi
    • H01L21/28
    • H01L21/76889H01L21/0485H01L21/0495H01L21/3065H01L23/4827H01L29/1608H01L29/45H01L29/6606H01L29/66143H01L29/8611H01L29/872H01L2924/0002H01L2924/00
    • A method for manufacturing a silicon carbide semiconductor device according to the present invention sequentially includes: a conductive layer forming step where a conductive layer is formed on a silicon carbide layer 110; a heat treatment step where the silicon carbide layer 110 and the conductive layer are made to react with each other thus forming an alloy layer formed of a reaction layer 120 which is in contact with the silicon carbide layer 110 and a silicide layer 124 which is present on the reaction layer 120; a first plasma ashing step where a carbon component which the silicide layer contains is removed; an etching step where at least a portion of the silicide layer 124 is removed using a hydrochloric acid, a nitric acid and a hydrofluoric acid thus exposing at least a portion of a surface of the reaction layer 120; and an electrode layer forming step where an electrode layer 130 is formed on an upper side of the exposed reaction layer 120. According to the method for manufacturing a silicon carbide semiconductor device of the present invention, it is possible to manufacture silicon carbide semiconductor devices with high productivity, and also possible to overcome a drawback that dispersion in device characteristics occurs due to a silicon component remaining after an etching step.
    • 根据本发明的用于制造碳化硅半导体器件的方法依次包括:导电层形成步骤,其中在碳化硅层110上形成导电层; 使碳化硅层110和导电层彼此反应从而形成由与碳化硅层110接触的反应层120和存在的硅化物层124形成的合金层的热处理步骤 在反应层120上; 第一等离子体灰化步骤,其中去除了硅化物层所含的碳成分; 蚀刻步骤,其中使用盐酸,硝酸和氢氟酸去除至少一部分硅化物层124,从而暴露反应层120的至少一部分表面; 以及电极层形成步骤,其中电极层130形成在暴露的反应层120的上侧。根据本发明的制造碳化硅半导体器件的方法,可以制造碳化硅半导体器件,其中 生产率高,并且还可以克服由于在蚀刻步骤之后剩余硅成分而发生器件特性的分散的缺点。