会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 11. 发明公开
    • Trim line determination in a deep draw manufacturing of a sheet metal part
    • 施泰因恩史密斯
    • EP2669826A2
    • 2013-12-04
    • EP13157949.2
    • 2013-03-06
    • Livermore Software Technology Corporation
    • Zhu, XinhaiZhang, Li
    • G06F17/50
    • G06F17/5018Y02T10/82
    • Methods and systems of determining a trim line in deep draw manufacturing of a sheet metal part are disclosed. A computerized model of a sheet metal part and the addendum surface geometry are defined. At least one flange portion in the computerized model is identified. A numerical simulation of unfolding of the flange towards the addendum surface by applying a first set of numerical loads to each pair of adjacent finite elements is performed. The first set of numerical loads is configured for flattening out a given pair of finite elements with a bending moment determined using relative orientations of the pair finite elements and material properties of the part. A second set of numerical loads is applied to close any remaining gap between the unfolded flange and the addendum thereafter. The outer edge of the flange portions in their final unfolded configuration is designated as a trim line.
    • 公开了一种确定钣金件的深拉制造中的修剪线的方法和系统。 定义了钣金零件和附件表面几何的计算机化模型。 识别计算机化模型中的至少一个凸缘部分。 执行通过对每对相邻有限元件施加第一组数值载荷来将凸缘展开到齿顶表面的数值模拟。 第一组数值载荷被配置成用给定的一对有限元平坦化,其弯曲力矩是使用该对有限元件的相对取向和零件的材料特性确定的。 应用第二组数值载荷来封闭未折叠法兰和附件之间的剩余间隙。 凸缘部分的最终展开构造的外边缘被指定为修剪线。
    • 12. 发明公开
    • Systems and Methods of Designing Airbag
    • 系统和Verfahren zum Entwerfen eines安全气囊
    • EP2608086A2
    • 2013-06-26
    • EP12188465.4
    • 2012-10-15
    • Livermore Software Technology Corporation
    • Bhalsod, Dilip Mulji
    • G06F17/50H02J3/38B60R21/16
    • G06F17/5018B60R21/16
    • Systems and methods for numerically creating corresponding 2-D mesh models for a plurality of airbag fabric panels from a 3-D computerized model of a fully-inflated airbag are disclosed. The 3-D computerized model comprises a plurality of nodes and a plurality of shell finite elements. Each shell element is categorized as to which one of a plurality of fabric panels that form the airbag it belongs. Each fabric panel occupies a continuous surface area of the airbag. Shell finite elements of a particular fabric panel are unfolded to a 2-D mesh one fabric panel at a time. The total surface area of a particular fabric panel is compared with the total area of the corresponding 2-D model. The 2-D mesh model is adjusted until the areas are within a predetermined tolerance. The final "total-area-matched" 2-D mesh model is further orientated to a fabric material coordinate system of warp and weft for determining manufacturability.
    • 公开了一种用于从完全充气的气囊的3-D计算机化模型数字地创建用于多个气囊织物面板的相应的2-D网格模型的系统和方法。 3-D计算机化模型包括多个节点和多个壳体有限元。 每个外壳元件被分类为形成其所属气囊的多个织物面板中的哪一个。 每个织物面板占据气囊的连续表面积。 特定织物面板的壳体有限元素一次展开为2-D网格的一个织物面板。 将特定织物面板的总表面积与相应的2-D模型的总面积进行比较。 调整2-D网格模型,直到区域在预定的公差内。 最终的“总面积匹配”2-D网格模型进一步定向为用于确定可制造性的经纱和纬纱的织物材料坐标系。
    • 13. 发明公开
    • Curve matching for parameter identification
    • Kurvenanpassung zur Parameteridentifizierung
    • EP2393027A2
    • 2011-12-07
    • EP11167629.2
    • 2011-05-26
    • Livermore Software Technology Corporation
    • Witowski, KatharinaStander, Nielen
    • G06F17/50
    • G06F17/5009
    • Methods and systems for matching a computed curve (304) to a target curve (302) to enable realistic engineering simulations are disclosed. Optimization of parameter identification is achieved by adjusting the parametric inputs of a simulation model such that the discrepancy between the two curves (302, 304) is minimized. Because the points (312, 316) on the two curves (302, 304) to be matched are paired, matching of any two open curves, including hysteretic curves, can be handled. Curves that are completely set apart in their original coordinates can be merged to a common coordinate system for parameter identification without the computational instability problems. A partial matching scheme (410g) is used for mapping points (312) defining the shorter one of the two curves (302, 304) to a set of mapped points (316) on the longer one. One or more offsets (320) from the first point of the longer curve (304) are used for multiple attempts (401g) to find a best fit.
    • 公开了用于将计算曲线(304)与目标曲线(302)匹配以实现实际工程仿真的方法和系统。 通过调整模拟模型的参数输入使两个曲线(302,304)之间的差异最小化来实现参数识别的优化。 因为要匹配的两条曲线(302,304)上的点(312,316)配对,所以可以处理任何两条开放曲线(包括滞后曲线)的匹配。 在原始坐标下完全分开的曲线可以合并到一个公共的坐标系中进行参数识别,而不会造成计算不稳定性问题。 部分匹配方案(410g)用于将两条曲线(302,304)中较短的一条曲线定义成较长的一组映射点(316)的映射点(312)。 从较长曲线(304)的第一点起的一个或多个偏移(320)用于多次尝试(401g)以找到最佳拟合。
    • 15. 发明公开
    • Improved topology optimization for designing engineering product
    • Verbesserte Topologieoptimierung zum Gestalten eines industrietechnischen Produkts
    • EP2251805A2
    • 2010-11-17
    • EP10155747.8
    • 2010-03-08
    • Livermore Software Technology Corporation
    • Goel, TusharRoux, William J.
    • G06F17/50
    • G06F17/5095G06F17/5018
    • Improved topology optimization for engineering product design is disclosed. An engineering product including a design domain to be optimized is defined. Design domain can be a portion of or the entire engineering product. Design objective and optional constraint are also defined such that optimization goal can be achieved. Additionally, initial configuration of the design domain is represented by a finite element analysis (FEA) mesh. Each element or element group is associated with a design variable. A set of discrete material models is created from the baseline material used for the design domain. The set of discrete material models is configured to cover entire range of the design variable and each discrete material model represents a nonoverlapping portion. Each element representing the design domain is associated with an appropriate discrete material model according to the design variable. Structure response of entire engineering product is obtained via FEA to evaluate design objective and update design variable.
    • 公开了改进的工程产品设计拓扑优化。 定义了包括要优化的设计域的工程产品。 设计领域可以是整个工程产品的一部分。 还定义了设计目标和可选约束,从而可以实现优化目标。 另外,设计域的初始配置由有限元分析(FEA)网格表示。 每个元素或元素组与设计变量相关联。 从设计领域使用的基准材料创建一组离散材料模型。 该组离散材料模型被配置为覆盖设计变量的整个范围,并且每个离散材料模型表示非重叠部分。 表示设计域的每个元素都与根据设计变量的适当的离散材料模型相关联。 通过FEA获得整个工程产品的结构响应,以评估设计目标和更新设计变量。
    • 16. 发明公开
    • Method of, computer readable medium and system for determination of spot weld failure using finite element analysis with stress and location sensitivity scale factors
    • 一种方法,计算机程序和系统,用于使用具有电压和Ortskalafaktoren有限元分析确定点焊焊点故障
    • EP2191928A1
    • 2010-06-02
    • EP09011220.2
    • 2009-09-01
    • Livermore Software Technology Corporation
    • Hallquist, John Q.
    • B23K31/12G01N3/00G06F17/50B23K11/34
    • B23K31/12B23K11/34G01N3/00G01N2203/0296
    • Each spot weld (110a-n) in a structure (100) is represented by a cluster of at least one solid element in a finite element analysis model of the structure. Each spot weld (110a-n) is used for tying together two parts (122,124). Each of the two parts (122,124) are generally represented or modeled as a number of two-dimension shell elements. Since the tie-connection between the spot weld (110a-n) and the two parts (122,124) can be located arbitrarily within the respective part (122,124), the shell elements representing the two parts (122,124) do not have to be aligned in space. The only requirement is the two shell elements must be overlapped each other such that the spot weld (110a-n) can tie the two shell elements (i.e., one from each part) together. A spot weld failure criterion used for determining failure including shear and axial stresses acted on the spot weld (110a-n), shell element size and spot weld (110a-n) location sensitivity scale factors and strain rate effect.
    • 在结构(100),每个点焊焊点(110A-N)是通过至少一种固体元件在结构的有限元分析模型中的簇代表。 每个点焊焊点(110A-N)用于两个部分(122,124)捆扎在一起。 每两个部分(122,124)的被表示或建模成数二维壳单元的基因的反弹。 由于点焊焊点(110A-N)和所述两个部件(122,124)之间的配合连接,可以任意的respectivement部分(122,124)内的位置,表示所述两个部分(122,124)的壳单元不必在对齐 空间。 唯一的要求是在两个壳单元必须重叠海誓山盟检查没有点焊(110A-N)可以配合在两个壳单元(即,一个从每一部分)一起使用。 用于确定性采矿失败包括剪切力和轴向应力甲点焊焊点故障标准作用于点焊焊点(110A-N),壳单元的尺寸和点焊焊点(110A-N)的位置敏感比例因子和应变率效应。
    • 17. 发明公开
    • Curve matching for parameter identification
    • 用于参数识别的曲线匹配
    • EP2393027A3
    • 2017-06-28
    • EP11167629.2
    • 2011-05-26
    • Livermore Software Technology Corporation
    • Witowski, KatharinaStander, Nielen
    • G06F17/50
    • G06F17/5009
    • Methods and systems for matching a computed curve (304) to a target curve (302) to enable realistic engineering simulations are disclosed. Optimization of parameter identification is achieved by adjusting the parametric inputs of a simulation model such that the discrepancy between the two curves (302, 304) is minimized. Because the points (312, 316) on the two curves (302, 304) to be matched are paired, matching of any two open curves, including hysteretic curves, can be handled. Curves that are completely set apart in their original coordinates can be merged to a common coordinate system for parameter identification without the computational instability problems. A partial matching scheme (410g) is used for mapping points (312) defining the shorter one of the two curves (302, 304) to a set of mapped points (316) on the longer one. One or more offsets (320) from the first point of the longer curve (304) are used for multiple attempts (401g) to find a best fit.
    • 公开了用于将计算曲线(304)与目标曲线(302)进行匹配以实现逼真的工程模拟的方法和系统。 通过调整模拟模型的参数输入来实现参数识别的优化,使得两条曲线(302,304)之间的差异最小化。 因为要匹配的两条曲线(302,304)上的点(312,316)是成对的,所以可以处理任何两条开放曲线(包括滞后曲线)的匹配。 在原始坐标中完全分开的曲线可以合并到通用坐标系中进行参数识别,而不会出现计算不稳定问题。 部分匹配方案(410g)用于将定义两条曲线(302,304)中较短的一条的点(312)映射到较长的一条上的一组映射点(316)。 来自较长曲线(304)的第一点的一个或多个偏移(320)被用于多次尝试(401g)以找到最佳拟合。
    • 18. 发明公开
    • Methods and systems for numerically simulating muscle movements along bones and around joints
    • 用于数值模拟沿着骨骼和关节周围的肌肉运动的方法和系统
    • EP2587392A3
    • 2017-06-07
    • EP12188464.7
    • 2012-10-15
    • Livermore Software Technology Corporation
    • Erhart, Tobias
    • G06F17/50
    • G06F17/5018
    • Systems and methods for numerically simulating muscle's movements along bones and around joints are disclosed. A computerized model containing a plurality of truss elements along with one or more rollers is used. The truss elements are configured for modeling a muscle strand while each roller is configured for a joint. Each truss element includes two end nodes and is configured or associated with a muscle biomechanical property model. Each roller is fixed at the location of a corresponding joint. To simulate the muscle strand movements around the joint, each pair of truss elements straddling a roller is adjusted dynamically in a time-marching simulation (e.g., computer simulation of an impact event of an automobile and one or more occupants). Adjustments are performed at each solution cycle of the time-marching simulation. Adjustments include two types - "slipping" and "swapping".
    • 披露了用于数值模拟肌肉沿骨骼和关节周围运动的系统和方法。 使用包含多个桁架元件以及一个或多个滚轮的计算机化模型。 桁架元件被配置用于在每个滚筒被配置用于关节时为肌肉股线建模。 每个桁架元件包括两个末端节点并且被配置或与肌肉生物力学属性模型相关联。 每个滚筒固定在相应接头的位置。 为了模拟关节周围的肌肉股线运动,在时间推进模拟(例如,汽车和一个或多个乘员的碰撞事件的计算机模拟)中动态调整跨骑在滚轮上的每对桁架元件。 调整是在时间推进模拟的每个解决方案周期执行的。 调整包括两种类型 - “滑动”和“交换”。