会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 99. 发明公开
    • MULTIPLY REDUNDANT RAID SYSTEM AND XOR-EFFICIENT IMPLEMENTATION
    • 多核心冗余RAID系统和XD效率实施
    • EP1859452A4
    • 2008-07-23
    • EP06738498
    • 2006-03-15
    • TANDBERG DATA CORP
    • DICKSON LAWRENCE JOHN
    • G11C29/00
    • H03M13/158G06F11/1076H03M13/1515H03M13/1575H03M13/616
    • An improved and extended Reed-Solomon-like method providing a redundancy of m≥3 is disclosed. A general expression of the codes and a systematic criterion for proving code correctness and finding decoding algorithms are described. Example codes for m=3, 4 and 5 based on primitive elements of a finite field of dimension N=8, 16 or 32 are given. A Homer's method and accumulator are described for XOR-efficient (15, 17) evaluation of polynomials with variable vector coefficients and a sparse square matrix abscissa. A power balancing technique is described to further improve XOR-efficiency of the algorithms. A tower coordinate technique to efficiently carry out finite field multiplication or inversion for large dimension N forms a basis for one decoding method. Another decoding method uses Schur expressions and a one-dimensional table of α powers to efficiently calculate the inverses of encoding matrix submatrices.
    • 公开了提供m≥3的冗余的改进和扩展的Reed-Solomon-like方法。 描述了代码的一般表达和用于验证代码正确性和找到解码算法的系统标准。 给出了基于维数N = 8,16或32的有限域的基本元素的m = 3,4和5的示例代码。 荷马方法和累加器被描述为XOR高效(15,17)评估具有可变矢量系数和稀疏方形矩阵横坐标的多项式。 描述了功率平衡技术以进一步提高算法的异或效率。 对于大尺寸N有效地执行有限域乘法或反演的塔坐标技术形成了一种解码方法的基础。 另一种解码方法使用Schur表达式和α权力的一维表来高效地计算编码矩阵子矩阵的逆矩阵。