会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Chemical derivatization of single-wall carbon nanotubes to facilitate solvation thereof, and use of derivatized nanotubes
    • 单壁碳纳米管的化学衍生化以促进其溶剂化,以及衍生的纳米管的使用
    • US06835366B1
    • 2004-12-28
    • US09787473
    • 2001-03-16
    • John L. MargraveEdward T. MickelsonRobert HaugePeter BoulChad HuffmanJie LiuRichard E. SmalleyKen SmithDaniel T. Colbert
    • John L. MargraveEdward T. MickelsonRobert HaugePeter BoulChad HuffmanJie LiuRichard E. SmalleyKen SmithDaniel T. Colbert
    • D01F912
    • B01J21/18B01J23/74B01J23/755B01J35/006B01J35/06B82Y30/00B82Y40/00C01B32/174C01B2202/02C01B2202/06D01F11/121Y10S977/74Y10S977/748Y10S977/75Y10S977/843Y10S977/848
    • This invention is directed to making chemical derivatives of carbon nanotubes and to uses for the derivatized nanotubes, including making arrays as a basis for synthesis of carbon fibers. In one embodiment, this invention also provides a method for preparing single wall carbon nanotubes having substituents attached to the side wall of the nanotube by reacting single wall carbon nanotubes with fluorine gas and recovering fluorine derivatized carbon nanotubes, then reacting fluorine derivatized carbon nanotubes with a nucleophile. Some of the fluorine substituents are replaced by nucleophilic substitution. If desired, the remaining fluorine can be completely or partially eliminated to produce single wall carbon nanotubes having substituents attached to the side wall of the nanotube. The substituents will, of course, be dependent on the nucleophile, and preferred nucleophiles include alkyl lithium species such as methyl lithium. Alternatively, fluorine may be fully or partially removed from fluorine derivatized carbon nanotubes by reacting the fluorine derivatized carbon nanotubes with various amounts of hydrazine, substituted hydrazine or alkyl amine. The present invention also provides seed materials for growth of single wall carbon nanotubes comprising a plurality of single wall carbon nanotubes or short tubular molecules having a catalyst precursor moiety covalently bound or physisorbed on the outer surface of the sidewall to provide the optimum metal cluster size under conditions that result in migration of the metal moiety to the tube end.
    • 本发明涉及制备碳纳米管的化学衍生物和衍生纳米管的用途,包括制备阵列作为碳纤维合成的基础。 在一个实施方案中,本发明还提供了通过使单壁碳纳米管与氟气反应并回收氟衍生的碳纳米管,制备具有连接到纳米管侧壁上的取代基的单壁碳纳米管的方法,然后使氟衍生的碳纳米管与 亲核试剂 一些氟取代基被亲核取代取代。 如果需要,可以完全或部分地除去剩余的氟以产生具有连接到纳米管的侧壁上的取代基的单壁碳纳米管。 取代基当然取决于亲核试剂,优选的亲核试剂包括烷基锂物质如甲基锂。 或者,可以通过使氟衍生的碳纳米管与各种量的肼,取代的肼或烷基胺反应,从氟衍生的碳纳米管中完全或部分地除去氟。 本发明还提供用于生长单壁碳纳米管的种子材料,其包含多个单壁碳纳米管或具有在侧壁的外表面上共价结合或物理吸附的催化剂前体部分的短管状分子,以提供最佳金属簇尺寸 导致金属部分迁移到管端的条件。
    • 3. 发明授权
    • Three-dimensional carbon fibers and method and apparatus for their production
    • 三维碳纤维及其生产方法和装置
    • US06787229B1
    • 2004-09-07
    • US10338436
    • 2003-01-08
    • Nazim Z. Muradov
    • Nazim Z. Muradov
    • D01F912
    • B82Y30/00D01F9/1271Y10T428/2918Y10T428/30
    • This invention relates to novel three-dimensional (3D) carbon fibers which are original (or primary) carbon fibers (OCF) with secondary carbon filaments (SCF) grown thereon, and, if desired, tertiary carbon filaments (TCF) are grown from the surface of SCF forming a filamentous carbon network with high surface area. The methods and apparatus are provided for growing SCF on the OCF by thermal decomposition of carbonaceous gases (CG) over the hot surface of the OCF without use of metal-based catalysts. The thickness and length of SCF can be controlled by varying operational conditions of the process, e.g., the nature of CG, temperature, residence time, etc. The optional activation step enables one to produce 3D activated carbon fibers with high surface area. The method and apparatus are provided for growing TCF on the SCF by thermal decomposition of carbonaceous gases over the hot surface of the SCF using metal catalyst particles.
    • 本发明涉及新生成的三维(3D)碳纤维,它们是在其上生长的具有次碳纤维(SCF)的原始(或初级)碳纤维(OCF),如果需要,叔碳纤维(TCF)从 SCF的表面形成具有高表面积的丝状碳网络。 提供了通过在OCF的热表面上热分解碳质气体(CG)而不使用金属基催化剂在OCF上生长SCF的方法和装置。 SCF的厚度和长度可以通过改变工艺的操作条件来控制,例如CG的性质,温度,停留时间等。可选择的活化步骤使得能够生产具有高表面积的3D活性炭纤维。 提供的方法和装置用于通过使用金属催化剂颗粒在SCF的热表面上热分解碳质气体来在SCF上生长TCF。
    • 8. 发明授权
    • Carbon fiber manufacturing via plasma technology
    • 通过等离子体技术制造碳纤维
    • US06372192B1
    • 2002-04-16
    • US09493474
    • 2000-01-28
    • Felix L. PaulauskasKenneth D. YarboroughThomas T. Meek
    • Felix L. PaulauskasKenneth D. YarboroughThomas T. Meek
    • D01F912
    • D01F9/22D01F9/12D01F9/145D01F9/16
    • The disclosed invention introduces a novel method of manufacturing carbon and/or graphite fibers that avoids the high costs associated with conventional carbonization processes. The method of the present invention avoids these costs by utilizing plasma technology in connection with electromagnetic radiation to produce carbon and/or graphite fibers from fully or partially stabilized carbon fiber precursors. In general, the stabilized or partially stabilized carbon fiber precursors are placed under slight tension, in an oxygen-free atmosphere, and carbonized using a plasma and electromagnetic radiation having a power input which is increased as the fibers become more carbonized and progress towards a final carbon or graphite product. In an additional step, the final carbon or graphite product may be surface treated with an oxygen-plasma treatment to enhance adhesion to matrix materials.
    • 所公开的发明引入了制造碳和/或石墨纤维的新方法,其避免了与常规碳化方法相关的高成本。 本发明的方法通过利用与电磁辐射相关的等离子体技术从完全或部分稳定的碳纤维前体产生碳和/或石墨纤维来避免这些成本。 通常,将稳定的或部分稳定化的碳纤维前体放置在无氧气氛中的轻微张力下,并且使用等离子体和电磁辐射进行碳化,其具有随着纤维变得更加碳化而进一步向功率输入增加的功率输入 碳或石墨产品。 在另外的步骤中,最终的碳或石墨产品可以用氧等离子体处理进行表面处理,以增强与基体材料的粘合性。
    • 10. 发明授权
    • Preparation of stable nanotube dispersions in liquids
    • 在液体中制备稳定的纳米管分散体
    • US06783746B1
    • 2004-08-31
    • US10021767
    • 2001-12-12
    • Zhiqiang ZhangFrances E. Lockwood
    • Zhiqiang ZhangFrances E. Lockwood
    • D01F912
    • D01F9/127B82Y30/00Y10S977/787Y10S977/842
    • The introduction of nanotubes in a liquid provides a means for changing the physical and/or chemical properties of the liquid. Improvements in heat transfer, electrical properties, viscosity, and lubricity can be realized upon dispersion of nanotubes in liquids; however, nanotubes behave like hydrophobic particles and tend to clump together in liquids. Methods of preparing stable dispersions of nanotubes are described and surfactants/dispersants are identified which can disperse carbon nanotubes in aqueous and petroleum liquid medium. The appropriate dispersant is chosen for the carbon nanotube and the water or oil based medium and the dispersant is dissolved into the liquid medium to form a solution. The carbon nanotube is added to the dispersant containing the solution with agitation, ultrasonication, and/or combinations thereof.
    • 在液体中引入纳米管提供了改变液体的物理和/或化学性质的手段。 可以在将纳米管分散在液体中时实现热传递,电性能,粘度和润滑性的改善; 然而,纳米管表现为疏水性颗粒,并且倾向于在液体中聚集在一起。 描述了制备稳定的纳米管分散体的方法,并鉴定了能够将碳纳米管分散在含水和石油液体介质中的表面活性剂/分散剂。 选择合适的分散剂用于碳纳米管和水或油基介质,并将分散剂溶解在液体介质中以形成溶液。 在搅拌,超声波处理和/或其组合下将碳纳米管加入含有该溶液的分散剂中。