会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 4. 发明授权
    • Weld-position detector provided with an optical axis adjustment means
and used with a robot welding machine
    • 焊接位置检测器,配有光轴调整装置,与机器人焊接机一起使用
    • US5570187A
    • 1996-10-29
    • US603181
    • 1996-02-20
    • Ryo NiheiYasuo SasakiTakahiro Hase
    • Ryo NiheiYasuo SasakiTakahiro Hase
    • G01B11/26B23K9/095B23K9/127B23Q35/128B25J19/02G01B11/24
    • B23K9/0956B23Q35/128G05B2219/36405G05B2219/4719
    • A weld-position detector, attached to an automatic welding machine such as a welding robot, having three independently produced indispensable units, i.e., a laser-beam projecting unit for projecting a detection laser-beam, a scanning unit for directing the detection laser-beam towards weld portions of a workpiece and scanning the detection laser-beam across the welded portions, and a light-receiving unit for detecting the detection laser-beam reflected by the workpiece to thereby detect the position of the weld portions. The weld-position detector further having a fixture provided with reference faces on which the three independent units are accurately mounted. The scanning means having a movable reflecting mirror is provided with an optical axis adjusting unit for adjusting the position and the posture of the scanning unit so as to adjust the optical axis of the detection laser-beam until the optical axis of the detection laser-beam, after being reflected from the workpiece, arrives at the light-receiving unit.
    • 焊接位置检测器,其安装在自动焊接机例如焊接机器人上,具有三个独立生产的不可缺少的单元,即用于投射检测激光束的激光束投射单元,用于引导检测激光束的扫描单元, 射束到工件的焊接部分并扫描焊接部分上的检测激光束;以及光接收单元,用于检测由工件反射的检测激光束,从而检测焊接部分的位置。 焊接位置检测器还具有设置有参考面的固定装置,三个独立的单元精确地安装在基准面上。 具有可移动反射镜的扫描装置设置有用于调节扫描单元的位置和姿势的光轴调节单元,以便将检测激光束的光轴调节到检测激光束的光轴 在从工件反射之后到达光接收单元。
    • 5. 发明授权
    • Wafer positioning system
    • 晶圆定位系统
    • US5563798A
    • 1996-10-08
    • US224622
    • 1994-04-05
    • Lloyd M. BerkenFrederik W. FreerksWilliam H. JarviHatice Sahin
    • Lloyd M. BerkenFrederik W. FreerksWilliam H. JarviHatice Sahin
    • G05B19/402H01L21/68G05B11/01
    • H01L21/681G05B19/402G05B2219/36405G05B2219/37286G05B2219/37608G05B2219/45026G05B2219/50151Y10S414/135
    • A wafer positioning system determines the position of a wafer during processing by monitoring the position of the wafer transport robot as the robot transports the wafer by one or more position sensors. The wafer positioning system incorporates a transparent cover on the surface of the wafer handling chamber and two optical position sensors disposed on the surface of the transparent cover. The position sensors direct light through the wafer handling chamber to reflectors near the floor of the chamber which reflect the light back to the position sensors. A detector within the position sensor detects when the beam path from the position sensor to the reflector is uninterrupted. As wafers are transported through the chamber, the edge of the transported wafer interrupts the position sensor beam path causing the output of the position sensor to switch states. When the position sensor output switches, the position of the wafer transport robot is measured. At least two data points are measured to establish the wafer position. If the wafer is not at its nominal position, the position of the wafer transport robot is adjusted to compensate for the wafer misalignment.
    • 晶片定位系统通过在机器人通过一个或多个位置传感器传送晶片时监视晶片传送机器人的位置来确定处理期间晶片的位置。 晶片定位系统在晶片处理室的表面上并入透明盖,并设置在透明盖表面上的两个光学位置传感器。 位置传感器将光通过晶片处理室引导到室内地板附近的反射器,反射器将光反射回位置传感器。 位置传感器内的检测器检测何时从位置传感器到反射镜的光束路径不间断。 当晶片被输送通过腔室时,输送的晶片的边缘中断位置传感器光束路径,导致位置传感器的输出切换状态。 当位置传感器输出切换时,测量晶片传送机器人的位置。 测量至少两个数据点以建立晶片位置。 如果晶片不在其标称位置,则调整晶片传送机器人的位置以补偿晶片未对准。
    • 6. 发明授权
    • On the fly center-finding during substrate handling in a processing system
    • 在处理系统中的基板处理期间的飞行中心查找
    • US06198976B1
    • 2001-03-06
    • US09034808
    • 1998-03-04
    • Satish SundarPeter F. Ebbing
    • Satish SundarPeter F. Ebbing
    • G05B1918
    • H01L21/681G05B2219/36405G05B2219/37283G05B2219/37608G05B2219/45031G05B2219/49299G05B2219/50151
    • A substrate center-finding method and apparatus, for determining the center of a substrate being passed through a substrate handling chamber of a substrate processing system, includes any number of sensors arranged in any configuration and permits the substrate to pass through any trajectory that triggers the sensors. The locations of the sensors are calibrated by homing in on the sensors using a point, the reference point, near the tip of an arm assembly on a substrate handler. The substrate handler has an encoder for sensing the pivot angles of links in the arm assembly, whereby the coordinates of the reference point can be calculated from the angles and lengths of the links. When the substrate triggers a sensor, the location of the reference point is again calculated, and the coordinates of the trigger point on the edge of the substrate is determined relative to the reference point. A suitable number of trigger points on the edge of a circular substrate will define a circle, so the center of the circle can be calculated, and the location of the substrate can be adjusted to account for any offset from the reference point.
    • 用于确定通过衬底处理系统的衬底处理室的衬底的中心的衬底中心测定方法和装置包括以任何构造布置的任何数量的传感器,并允许衬底通过任何触发器件的轨迹 传感器。 传感器的位置通过使用在基板处理器上的臂组件的尖端附近的点(参考点)归位在传感器上来校准。 衬底处理器具有用于感测臂组件中的链节的枢转角度的编码器,由此可以根据链节的角度和长度来计算参考点的坐标。 当基板触发传感器时,再次计算参考点的位置,并且相对于参考点确定基板边缘上的触发点的坐标。 在圆形基板的边缘上的合适数量的触发点将限定圆形,因此可以计算圆的中心,并且可以调整基板的位置以考虑到与参考点的任何偏移。
    • 9. 发明申请
    • METHOD AND APPARATUS FOR CONTROLLING ROBOT HAVING SENSOR
    • 用于控制具有传感器的机器人的方法和装置
    • WO1994027199A1
    • 1994-11-24
    • PCT/JP1994000762
    • 1994-05-11
    • KOSAKA, TetsuyaKOBAYASHI, Eiichi
    • G05B19/42
    • B23Q35/128B25J9/1684G05B2219/36405G05B2219/45104
    • The position of work contour is detected by a sensor. A real-time tracking on the work contour is executed by utilizing the output signals from the sensor for the correction of the path instructed to follow. The positional sensing for the welding contour in forward areas of a robot is executed by the sensor held by a robot hand in order to obtain the positional data on the sensing point kSm. The sensing data are transformed into the coordinate data s (k, m) for the coordinate system of the workpiece, and then, processed by use of the data on the zone Pk Pk+1 of the instructed path to which the sensing point kSm belongs. The data thus processed are stored in a buffer memory of a ring memory type together with the coordinate data on the sensing point. Immediately before the execution of the tracking, the required data are read from the buffer memory to obtain the target point of a tracking in a short period of time. The amounts of correction for the interpolating points and instructed points are calculated for the generation of the output for controlling each of the shafts, and transferred to a servocontrol system in order to allow the robot to move toward the target point of the tracking.
    • 工件轮廓的位置由传感器检测。 通过利用传感器的输出信号来执行对工作轮廓的实时跟踪,以校正指示的路径。 机器人前方区域的焊接轮廓的位置检测由机器人手持有的传感器执行,以便获得检测点kSm上的位置数据。 将感测数据变换为工件的坐标系的坐标数据s(k,m),然后通过使用感测点kSm所属的指示路径的区域Pk Pk + 1上的数据进行处理 。 这样处理的数据与检测点上的坐标数据一起存储在环形存储器类型的缓冲存储器中。 在执行跟踪之前,从缓冲存储器读取所需数据,以在短时间内获得跟踪的目标点。 计算内插点和指示点的校正量,用于生成用于控制每个轴的输出,并且传送到伺服控制系统以允许机器人朝向跟踪的目标点移动。
    • 10. 发明公开
    • Method of and apparatus for dynamic alignment of substrates
    • 用于基材的动态调整的方法和装置
    • EP1102311A3
    • 2004-09-15
    • EP00310351.2
    • 2000-11-22
    • LAM RESEARCH CORPORATION
    • Mooring, Benjamin W.Freund, Charles W.
    • H01L21/00
    • G05B19/401G05B19/4083G05B2219/36405G05B2219/37283G05B2219/37512G05B2219/45031G05B2219/49299H01L21/681H01L21/682
    • A wafer is transported on a blade of a robot and along a path through a port and into a module of semiconductor manufacturing equipment. The port has a transverse axis that intersects the path. Dynamic alignment determines the position of the center of the wafer with respect to the center of the blade as the wafer is transported, and uses two through-beam sensors positioned along the transverse axis according to latency characteristics of the sensors. The positioning of the sensors assures that the moving wafer will break or make a beam of a first of the sensors and that the first sensor will generate a first transition signal before the moving wafer will break or make a beam of a second of the sensors and before the second sensor generates a second transition signal. The dynamic alignment may be performed with respect to wafers having different sizes. One of the sensors is positioned for operations with respect to both sizes of wafers, whereas the second of the sensors operates and is positioned along the transverse axis for only one size wafer, and a third of the sensors operates and is positioned along the transverse axis for only the other size wafer. Three sensors may be provided for the port at each facet of each module of the semiconductor equipment. Logic circuitry processes the transition signals from appropriate ones of the sensors to identify the particular one of the ports through which the wafer is being transported. The detected position information (e.g., having possible misalignment) is then used by the robot when the wafer is subsequently positioned into a given chamber. The subsequent positioning therefore compensates for any misalignment and ensures accurately placed wafers.