会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 4. 发明授权
    • Method and system for comprehensive patient-specific modeling of the heart
    • 心脏综合患者特异性建模的方法和系统
    • US08682626B2
    • 2014-03-25
    • US13091076
    • 2011-04-20
    • Razvan Ioan IonasecIngmar VoigtViorel MihalefSasa GrbicDime VitanovskiYang WangYefeng ZhengBogdan GeorgescuDorin ComaniciuPuneet SharmaTommaso Mansi
    • Razvan Ioan IonasecIngmar VoigtViorel MihalefSasa GrbicDime VitanovskiYang WangYefeng ZhengBogdan GeorgescuDorin ComaniciuPuneet SharmaTommaso Mansi
    • G06G7/48
    • G06T13/20G06F19/321G06T2210/24G06T2210/41G16H50/50
    • A method and system for patient-specific modeling of the whole heart anatomy, dynamics, hemodynamics, and fluid structure interaction from 4D medical image data is disclosed. The anatomy and dynamics of the heart are determined by estimating patient-specific parameters of a physiological model of the heart from the 4D medical image data for a patient. The patient-specific anatomy and dynamics are used as input to a 3D Navier-Stokes solver that derives realistic hemodynamics, constrained by the local anatomy, along the entire heart cycle. Fluid structure interactions are determined iteratively over the heart cycle by simulating the blood flow at a given time step and calculating the deformation of the heart structure based on the simulated blood flow, such that the deformation of the heart structure is used in the simulation of the blood flow at the next time step. The comprehensive patient-specific model of the heart representing anatomy, dynamics, hemodynamics, and fluid structure interaction can be used for non-invasive assessment and diagnosis of the heart, as well as virtual therapy planning and cardiovascular disease management. Parameters of the comprehensive patient-specific model are changed or perturbed to simulate various conditions or treatment options, and then the patient specific model is recalculated to predict the effect of the conditions or treatment options.
    • 公开了一种用于针对4D医学图像数据的整个心脏解剖结构,动力学,血流动力学和流体结构相互作用的患者特异性建模的方法和系统。 通过从患者的4D医学图像数据估计心脏的生理模型的患者特异性参数来确定心脏的解剖学和动力学。 患者特异性解剖学和动力学被用作3D Navier-Stokes求解器的输入,该解算器在整个心脏周期中导出由局部解剖结构约束的现实血液动力学。 流体结构相互作用是通过在给定的时间步长模拟血液流动而在心脏周期上迭代地确定的,并且基于模拟的血液流量计算心脏结构的变形,使得心脏结构的变形用于模拟 血液流动在下一个时间步。 代表解剖学,动力学,血液动力学和流体结构相互作用的心脏综合患者特异性模型可用于心脏的非侵入性评估和诊断,以及虚拟治疗计划和心血管疾病管理。 全面的患者特异性模型的参数被改变或扰动以模拟各种条件或治疗选择,然后重新计算患者特异性模型以预测条件或治疗选择的影响。
    • 6. 发明申请
    • Method and System for Comprehensive Patient-Specific Modeling of the Heart
    • 心脏综合患者特异性建模方法与系统
    • US20120022843A1
    • 2012-01-26
    • US13091076
    • 2011-04-20
    • Razvan Ioan IonasecIngmar VoigtViorel MihalefSasa GrbicDime VitanovskiYang WangYefeng ZhengBogdan GeorgescuDorin ComaniciuPuneet SharmaTommaso Mansi
    • Razvan Ioan IonasecIngmar VoigtViorel MihalefSasa GrbicDime VitanovskiYang WangYefeng ZhengBogdan GeorgescuDorin ComaniciuPuneet SharmaTommaso Mansi
    • G06G7/60G06G7/57
    • G06T13/20G06F19/321G06T2210/24G06T2210/41G16H50/50
    • A method and system for patient-specific modeling of the whole heart anatomy, dynamics, hemodynamics, and fluid structure interaction from 4D medical image data is disclosed. The anatomy and dynamics of the heart are determined by estimating patient-specific parameters of a physiological model of the heart from the 4D medical image data for a patient. The patient-specific anatomy and dynamics are used as input to a 3D Navier-Stokes solver that derives realistic hemodynamics, constrained by the local anatomy, along the entire heart cycle. Fluid structure interactions are determined iteratively over the heart cycle by simulating the blood flow at a given time step and calculating the deformation of the heart structure based on the simulated blood flow, such that the deformation of the heart structure is used in the simulation of the blood flow at the next time step. The comprehensive patient-specific model of the heart representing anatomy, dynamics, hemodynamics, and fluid structure interaction can be used for non-invasive assessment and diagnosis of the heart, as well as virtual therapy planning and cardiovascular disease management. Parameters of the comprehensive patient-specific model are changed or perturbed to simulate various conditions or treatment options, and then the patient specific model is recalculated to predict the effect of the conditions or treatment options.
    • 公开了一种用于针对4D医学图像数据的整个心脏解剖结构,动力学,血流动力学和流体结构相互作用的患者特异性建模的方法和系统。 通过从患者的4D医学图像数据估计心脏的生理模型的患者特异性参数来确定心脏的解剖学和动力学。 患者特异性解剖学和动力学被用作3D Navier-Stokes求解器的输入,该解算器在整个心脏周期中导出由局部解剖结构约束的现实血液动力学。 流体结构相互作用是通过在给定的时间步长模拟血液流动而在心脏周期上迭代地确定的,并且基于模拟的血液流量计算心脏结构的变形,使得心脏结构的变形用于模拟 血液流动在下一个时间步。 代表解剖学,动力学,血液动力学和流体结构相互作用的心脏综合患者特异性模型可用于心脏的非侵入性评估和诊断,以及虚拟治疗计划和心血管疾病管理。 全面的患者特异性模型的参数被改变或扰动以模拟各种条件或治疗选择,然后重新计算患者特异性模型以预测条件或治疗选择的影响。
    • 10. 发明申请
    • COMPUTERIZED CHARACTERIZATION OF CARDIAC MOTION IN MEDICAL DIAGNOSTIC ULTRASOUND
    • 医学诊断超声心脏运动的计算机表征
    • US20120078097A1
    • 2012-03-29
    • US13234697
    • 2011-09-16
    • Yang WangBogdan GeorgescuHelene C. HouleDorin Comaniciu
    • Yang WangBogdan GeorgescuHelene C. HouleDorin Comaniciu
    • A61B8/08
    • A61B8/483A61B8/00A61B8/0883G06T7/251G06T2207/10136G06T2207/30048
    • Computerized characterization of cardiac wall motion is provided. Quantities for cardiac wall motion are determined from a four-dimensional (i.e., 3D+time) sequence of ultrasound data. A processor automatically processes the volume data to locate the cardiac wall through the sequence and calculate the quantity from the cardiac wall position or motion. Various machine learning is used for locating and tracking the cardiac wall, such as using a motion prior learned from training data for initially locating the cardiac wall and the motion prior, speckle tracking, boundary detection, and mass conservation cues for tracking with another machine learned classifier. Where the sequence extends over multiple cycles, the cycles are automatically divided for independent tracking of the cardiac wall. The cardiac wall from one cycle may be used to propagate to another cycle for initializing the tracking. Independent tracking in each cycle may reduce or avoid inaccuracies due to drift.
    • 提供了心脏壁运动的计算机化特征。 用于心脏壁运动的量由超声数据的四维(即3D +时间)序列确定。 处理器自动处理体积数据以通过序列定位心脏壁,并从心脏壁位置或运动计算量。 使用各种机器学习来定位和跟踪心脏壁,例如使用从训练数据学习的运动,用于初始定位心脏壁和运动,斑点跟踪,边界检测和用于跟踪另一机器学习的质量保护线索 分类器 当序列延伸多个周期时,循环被自动划分为心脏壁的独立跟踪。 来自一个周期的心脏壁可用于传播到另一周期以初始化跟踪。 每个循环中的独立跟踪可能会减少或避免由于漂移引起的不准确。