会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Method for inversion processing of transverse electromagnetic induction
well logging measurements
    • 横向电磁感应测井测量的反演处理方法
    • US5854991A
    • 1998-12-29
    • US67567
    • 1998-04-28
    • Pravin GuptaBerthold F. KriegshauserZeljko JericevicOtto N. Fanini
    • Pravin GuptaBerthold F. KriegshauserZeljko JericevicOtto N. Fanini
    • E21B41/00G01V3/28G06F19/00
    • G01V3/28E21B2041/0028
    • A method for determining the 2-dimensional distribution of horizontal and vertical electrical conductivities of earth formations surrounding a wellbore using measurements made by a transverse electromagnetic induction well logging instrument. A model is generated of the axial distribution of the horizontal and vertical conductivities, from induction signals acquired by the instrument using two-frequency alternating current. The model is generated by calculating an initial estimate of the conductivity distribution and axially inverting the estimate with respect to the measurements made using the two-frequency alternating current. Shoulder correction is applied to measurements made by the instrument using single-frequency alternating current. An estimate of the radial distribution of the conductivities is generated from the shoulder corrected induction signals acquired using the single-frequency alternating current. A 2-dimensional model is made of the conductivity distribution from the model of axial distribution and from the estimate of radial distribution. The two-frequency induction signals are corrected for near wellbore effects using two-frequency whole space responses calculated using the 2-dimensional model. The corrected two-frequency signals are then axially inverted to generate a 2-dimensional model. Using the corrected two-frequency signals in place of the acquired signals, all the previous steps are repeated until differences between the corrected two-frequency induction signals from successive repetitions (iterations) of the steps fall below a predetermined threshold. The two-dimensional model extant when process is halted becomes the final two-dimensional model.
    • 使用横向电磁感应测井仪测量的确定井筒周围地球地层水平和垂直电导率二维分布的方法。 从使用双频交流电的仪器获取的感应信号产生水平和垂直电导率轴向分布的模型。 该模型通过计算电导率分布的初始估计并相对于使用双频交流电流进行的测量轴向反转估计而产生。 肩部矫正适用于使用单频交流电的仪器进行的测量。 电导率的径向分布的估计是从使用单频交流电获得的肩部校正的感应信号产生的。 二维模型由轴向分布模型和径向分布估计的电导率分布组成。 使用使用二维模型计算的双频整体空间响应来校正近似井眼效应的双频感应信号。 然后校正的两个频率信号被轴向反转以产生二维模型。 使用校正的双频信号代替获取的信号,重复所有先前的步骤,直到来自步骤的连续重复(迭代)的校正的双频感应信号之间的差值降至预定阈值以下。 当过程停止时,存在的二维模型成为最终的二维模型。
    • 2. 发明授权
    • Method for determining the axial position of formation layer boundaries
using measurements made by a transverse electromagnetic induction
logging instrument
    • 用横向电磁感应测井仪测量地层边界轴向位置的方法
    • US5999884A
    • 1999-12-07
    • US44741
    • 1998-03-19
    • Berthold F. KriegshauserPravin GuptaZeljko JericevicOtto N. Fanini
    • Berthold F. KriegshauserPravin GuptaZeljko JericevicOtto N. Fanini
    • E21B41/00G01V3/28G01V3/38
    • G01V3/28E21B2041/0028
    • A method for estimating axial positions of formation layer boundaries from transverse electromagnetic induction signals. A first derivative is calculated with respect to depth of the induction signals. A second derivative of the signals is calculated. The second derivative is muted. Layer boundaries are selected at axial positions where the muted second derivative is non zero, and the first derivative changes sign. The selected boundaries are thickness filtered to eliminate boundaries which have the same axial spacing as the spacing between an induction transmitter and receiver used to measure the induction signals, and to eliminate boundaries having a spacing less than an axial resolution of the induction signals. In a preferred embodiment, the process is repeated using transverse induction measurements made at another alternating current frequency. Layer boundaries selected in both frequencies are determined to be the layer boundaries. An alternative embodiment includes Fourier transforming the induction signals into the spatial frequency domain, low pass filtering the Fourier transformed signals at a band limit about equal to the axial resolution of the induction signals, calculating a central first derivative of the filtered, Fourier transformed signals, calculating an inverse Fourier transform of the central first derivative, determining roots of the inverse Fourier transform, and testing localized properties of the inverse Fourier transform within a selected number of data sample points of the selected roots, thereby providing indications of formation layer boundaries at axial positions most likely to be true ones of the formation layer boundaries.
    • 一种用于估计地层层边界与横向电磁感应信号的轴向位置的方法。 相对于感应信号的深度计算一阶导数。 计算信号的二阶导数。 二阶导数被静音。 在静态二阶导数不为零的轴位置选择层边界,第一导数更改符号。 所选择的边界被厚度滤波以消除与用于测量感应信号的感应发射器和接收器之间的间隔具有相同轴向间距的边界,并且消除间隔小于感应信号的轴向分辨率的边界。 在优选实施例中,使用在另一交流频率下进行的横向感应测量来重复该过程。 在两个频率中选择的层边界被确定为层边界。 一个替代实施例包括将感应信号傅里叶变换成空间频域,在大约等于感应信号的轴向分辨率的频带限制下对傅里叶变换信号进行低通滤波,计算滤波后的傅里叶变换信号的中心一阶导数, 计算中心一阶导数的傅里叶逆变换,确定逆傅里叶变换的根,并在所选择的根的选定数量的数据采样点内测试逆傅里叶变换的局部特性,从而在轴向上提供形成层边界的指示 位置最有可能是形成层边界的真实位置。
    • 3. 发明授权
    • Conductivity anisotropy estimation method for inversion processing of
measurements made by a transverse electromagnetic induction logging
instrument
    • 横向电磁感应测井仪测量电导率各向异性估算方法
    • US5999883A
    • 1999-12-07
    • US42982
    • 1998-03-17
    • Pravin GuptaBerthold F. KriegshauserOtto N. Fanini
    • Pravin GuptaBerthold F. KriegshauserOtto N. Fanini
    • E21B41/00G01V3/28G06F19/00G01V3/38
    • G01V3/28E21B2041/0028
    • A method for determining an initial estimate of the horizontal conductivity and the vertical conductivity of an anisotropic earth formation. Electromagnetic induction signals induced by induction transmitters oriented along three mutually orthogonal axes are measured. One of the mutually orthogonal axes is substantially parallel to a logging instrument axis. The electromagnetic induction signals are measured using first receivers each having a magnetic moment parallel to one of the orthogonal axes and using second receivers each having a magnetic moment perpendicular to a one of the orthogonal axes which is also perpendicular to the instrument axis. A relative angle of rotation of the perpendicular one of the orthogonal axes is calculated from the receiver signals measured perpendicular to the instrument axis. An intermediate measurement tensor is calculated by rotating magnitudes of the receiver signals through a negative of the angle of rotation. A relative angle of inclination of one of the orthogonal axes which is parallel to the axis of the instrument is calculated, from the rotated magnitudes, with respect to a direction of the vertical conductivity. The rotated magnitudes are rotated through a negative of the angle of inclination. Horizontal conductivity is calculated from the magnitudes of the receiver signals after the second step of rotation. An anisotropy parameter is calculated from the receiver signal magnitudes after the second step of rotation. Vertical conductivity is calculated from the horizontal conductivity and the anisotropy parameter.
    • 一种用于确定各向异性地层的水平导电率和垂直导电率的初始估计的方法。 测量由三个相互正交的轴取向的感应发射器引起的电磁感应信号。 相互正交的轴之一基本上平行于测井仪器轴线。 使用第一接收器测量电磁感应信号,每个接收机具有平行于正交轴之一的磁矩,并且使用第二接收器,每个接收器具有垂直于垂直于仪器轴的正交轴之一的磁矩。 从垂直于仪器轴测量的接收机信号计算垂直轴之一的相对旋转角度。 通过将接收机信号的大小旋转通过旋转角度的负值来计算中间测量张量。 相对于垂直导电率的方向,从旋转的大小计算平行于仪器的轴线的正交轴之一的相对倾斜角。 旋转的大小通过倾斜角度的负值旋转。 在第二个旋转步骤之后,根据接收机信号的幅度计算水平电导率。 从第二步旋转后的接收机信号幅度计算各向异性参数。 垂直电导率由水平电导率和各向异性参数计算。