会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Extended depth-of-field lenses and methods for their design, optimization and manufacturing
    • 扩展的景深透镜及其设计,优化和制造的方法
    • US07898746B2
    • 2011-03-01
    • US12167741
    • 2008-07-03
    • Nicholas GeorgeXi Chen
    • Nicholas GeorgeXi Chen
    • G02B13/18G02B3/02G02B3/10
    • G02B27/0012G02B9/34G02B13/18G02B27/0075
    • For rotationally symmetric aspheric lenses, one can establish lens design and layout based upon the phase delay function exp[−iφ(ρ)]. An embodiment of the invention is a method for calculating a corresponding variation in focal length denoted by f(ρ). According to an aspect, one can also assert a shape for the focal length f(ρ) and thereafter calculate a phase delay function in order to synthesize a novel lens. New EDoF lens designs are obtained by selection of an inner and outer focal length connected by a simple curve that can be approximate by a polynomial. From the selected f(ρ), one can synthesize a finished EDoF lens design and fabricate the lens. Another aspect of this invention is directed to a method to tailor prior-art EDoF lenses so that their performance over some range is improved.
    • 对于旋转对称非球面透镜,可以基于相位延迟函数exp [-i&phgr((&rgr))]建立透镜设计和布局。 本发明的实施例是用于计算由f(&rgr;)表示的焦距的相应变化的方法。 根据一个方面,还可以为焦距f(&rgr)设置形状,然后计算相位延迟函数,以便合成新颖的透镜。 通过选择通过可以通过多项式近似的简单曲线连接的内焦距和外焦距来获得新的EDoF透镜设计。 从选择的f(&rgr;),可以合成完成的EDoF镜头设计并制作镜头。 本发明的另一方面涉及一种定制现有技术的EDoF透镜的方法,使得它们在一些范围上的性能得到改善。
    • 2. 发明申请
    • Extended Depth-of-Field Lenses and Methods For Their Design, Optimization and Manufacturing
    • 扩展深度透镜及其设计,优化和制造方法
    • US20100002310A1
    • 2010-01-07
    • US12167741
    • 2008-07-03
    • Nicholas GeorgeXi Chen
    • Nicholas GeorgeXi Chen
    • G02B13/18B29D11/00G06F17/10
    • G02B27/0012G02B9/34G02B13/18G02B27/0075
    • For rotationally symmetric aspheric lenses, one can establish lens design and layout based upon the phase delay function exp[−iφ(ρ)]. An embodiment of the invention is a method for calculating a corresponding variation in focal length denoted by f(ρ). According to an aspect, one can also assert a shape for the focal length f(ρ) and thereafter calculate a phase delay function in order to synthesize a novel lens. New EDoF lens designs are obtained by selection of an inner and outer focal length connected by a simple curve that can be approximate by a polynomial. From the selected f(ρ), one can synthesize a finished EDoF lens design and fabricate the lens. Another aspect of this invention is directed to a method to tailor prior-art EDoF lenses so that their performance over some range is improved.
    • 对于旋转对称非球面透镜,可以基于相位延迟函数exp [-iphi(rho)]建立透镜设计和布局。 本发明的实施例是用于计算由f(rho)表示的焦距的相应变化的方法。 根据一个方面,还可以为焦距f(rho)确定一个形状,然后计算相位延迟函数,以便合成一个新颖的透镜。 通过选择通过可以通过多项式近似的简单曲线连接的内焦距和外焦距来获得新的EDoF透镜设计。 从选定的f(rho)中,可以合成完成的EDoF透镜设计并制作镜头。 本发明的另一方面涉及一种定制现有技术的EDoF透镜的方法,使得它们在一些范围上的性能得到改善。
    • 3. 发明授权
    • System for recovery of degraded images
    • 退化图像恢复系统
    • US07729010B2
    • 2010-06-01
    • US11501207
    • 2006-08-07
    • Nicholas George
    • Nicholas George
    • H04N1/40
    • G06T5/003G06T5/10G06T5/50G06T2207/20056
    • A system for recovering degraded images captured through atmospheric turbulence, or other atmospheric inhomogeneities, such as snow, rain, smoke, fog, or underwater fluctuations, is provided having an imager for capturing through such turbulence both a degraded image of a scene having at least one object, and an image of a point source associated with the object. The imager converts the degraded image into first image data signals representing the degraded image, and converts the image of the point source into second image data signals representing a point spread function. A computer of the system receives the first and second image data signals and produces third image data signals representing a recovered image of the object of the degraded image in accordance with the first and second image data signals. In another embodiment, the imager captures a degraded image through atmospheric turbulence of a scene having a known reference object and an unknown object, and converts the degraded image into first image data signals. After receiving the first image data signals, the computer identifies in the first image data signals such image data signals representing the reference object. The computer produces image data signals representing a recovered image of the degraded image in accordance with the first image data signals, the image data signals representing the reference in the first image data signals, and image data signals representing an undegraded image of the reference. The computer may output the image data signals representing a recovered image to an output device to display or print the recovered image.
    • 提供了一种用于恢复通过大气湍流或其他大气不均匀性(例如雪,雨,烟雾,雾或水下波动)捕获的退化图像的系统,其具有用于通过这种湍流捕获至少具有至少一个场景的劣化图像 一个对象和与对象相关联的点源的图像。 成像器将退化图像转换为表示退化图像的第一图像数据信号,并将点源的图像转换为表示点扩散函数的第二图像数据信号。 系统的计算机接收第一和第二图像数据信号,并根据第一和第二图像数据信号产生表示退化图像的对象的恢复图像的第三图像数据信号。 在另一个实施例中,成像器通过具有已知参考对象和未知对象的场景的大气湍流捕获退化图像,并将退化图像转换为第一图像数据信号。 在接收到第一图像数据信号之后,计算机在第一图像数据信号中识别表示参考对象的图像数据信号。 计算机根据第一图像数据信号产生表示退化图像的恢复图像的图像数据信号,表示第一图像数据信号中的参考的图像数据信号和表示参考的未降级图像的图像数据信号。 计算机可以将表示恢复的图像的图像数据信号输出到输出装置,以显示或打印恢复的图像。
    • 4. 发明授权
    • Apparatus and method for extended depth of field imaging
    • 用于扩展景深成像的装置和方法
    • US07511895B2
    • 2009-03-31
    • US11956553
    • 2007-12-14
    • Nicholas GeorgeWanli Chi
    • Nicholas GeorgeWanli Chi
    • G02B13/00G02B3/00G02B13/18G02B3/02
    • G02B27/0075G06T5/50H04N5/23229
    • An extended depth of field is achieved by a computational imaging system that combines a multifocal imaging subsystem for producing a purposefully blurred intermediate image with a digital processing subsystem for producing a recovered image having an extended depth of field. The multifocal imaging system exhibits spherical aberration as the dominant feature of the purposeful blur. In an aspect, a central obscuration of the multifocal imaging subsystem renders point-spread functions of object points more uniform over a range of object distances, however, the system may not include a centrally obscured aperture to achieve intended results. An iterative digital deconvolution algorithm for converting the intermediate image into the recovered image based on maximum entropy involves a metric parameter that speeds convergence, avoids stagnations, and enhances image quality.
    • 通过计算成像系统实现扩展景深,该计算成像系统组合多焦点成像子系统,用于产生有目的地模糊的中间图像与数字处理子系统,用于产生具有扩展景深的恢复图像。 多焦点成像系统将球面像差作为目标模糊的主要特征。 在一个方面,多焦点成像子系统的中心遮蔽使得对象点的点扩散函数在对象距离的范围上更均匀,然而,该系统可能不包括用于实现预期结果的中心模糊孔径。 用于基于最大熵将中间图像转换成恢复图像的迭代数字去卷积算法涉及加速收敛,避免停滞并提高图像质量的度量参数。
    • 5. 发明申请
    • Apparatus and Method For Extended Depth of Field Imaging
    • 用于扩展景深成像的装置和方法
    • US20080089598A1
    • 2008-04-17
    • US11956553
    • 2007-12-14
    • Nicholas GeorgeWanli Chi
    • Nicholas GeorgeWanli Chi
    • G06K9/40
    • G02B27/0075G06T5/50H04N5/23229
    • An extended depth of field is achieved by a computational imaging system that combines a multifocal imaging subsystem for producing a purposefully blurred intermediate image with a digital processing subsystem for producing a recovered image having an extended depth of field. The multifocal imaging system exhibits spherical aberration as the dominant feature of the purposeful blur. In an aspect, a central obscuration of the multifocal imaging subsystem renders point-spread functions of object points more uniform over a range of object distances, however, the system may not include a centrally obscured aperture to achieve intended results. An iterative digital deconvolution algorithm for converting the intermediate image into the recovered image based on maximum entropy involves a metric parameter that speeds convergence, avoids stagnations, and enhances image quality.
    • 通过计算成像系统实现扩展景深,该计算成像系统组合多焦点成像子系统,用于产生有目的地模糊的中间图像与数字处理子系统,用于产生具有扩展景深的恢复图像。 多焦点成像系统将球面像差作为目标模糊的主要特征。 在一个方面,多焦点成像子系统的中心遮蔽使得对象点的点扩散函数在对象距离的范围上更均匀,然而,该系统可能不包括用于实现预期结果的中心模糊孔径。 用于基于最大熵将中间图像转换成恢复图像的迭代数字去卷积算法涉及加速收敛,避免停滞并提高图像质量的度量参数。
    • 6. 发明授权
    • Optical system for diffusing light
    • 用于漫射光的光学系统
    • US06583932B1
    • 2003-06-24
    • US09777113
    • 2001-02-05
    • Nicholas GeorgeDonald J. Schertler
    • Nicholas GeorgeDonald J. Schertler
    • G02B2744
    • G02B5/0221G02B5/0252G02B5/0278G02B5/1814G02B27/425
    • An improved optical system is provided for diffusing light uniformly over a wide angle, including, a diffractive element for diffracting light received by the system in multiple diffraction orders, and a diffusing element which diffuses the diffracted light. The diffractive element provides diffracted light having an angular distribution of intensities over the diffraction orders which is correlated to the power spectrum of the diffusing element such that the system produces a predetermined intensity distribution of diffused light. The diffraction period of the diffractive element is selected such that the angular separation between the zeroeth and first diffraction orders is approximately one-half the angular extent of the full-width-at-half-maximum of the power spectrum of the diffusing element. The strengths of the diffraction orders are selected such that the combination of diffused light from each diffractive order provides uniformity in the intensity of the diffused light from the system.
    • 提供了一种改进的光学系统,用于在广角上均匀散射光,包括用于衍射由系统以多个衍射级接收的光的衍射元件和漫射衍射光的漫射元件。 衍射元件提供具有与散射元件的功率谱相关的衍射级的强度角度分布的衍射光,使得系统产生预定的漫射光强度分布。 衍射元件的衍射周期被选择为使得第零和第一衍射级之间的角度间隔大约是漫射元件的功率谱的全宽度 - 半最大值的角度范围的一半。 选择衍射级的强度使得来自每个衍射级的漫射光的组合提供了来自系统的漫射光的强度的均匀性。
    • 7. 发明授权
    • System for recovery of degraded images
    • 退化图像恢复系统
    • US06459818B1
    • 2002-10-01
    • US09259774
    • 1999-03-01
    • Nicholas George
    • Nicholas George
    • G06K940
    • G06T5/003G06T5/10G06T5/50G06T2207/20056
    • A system for recovering degraded images captured through atmospheric turbulence, or other atmospheric inhomogeneities, such as snow, rain, smoke, fog, or underwater fluctuations, is provided having an imager for capturing through such turbulence both a degraded image of a scene having at least one object, and an image of a point source associated with the object. The imager converts the degraded image into first image data signals representing the degraded image, and converts the image of the point source into second image data signals representing a point spread function. A computer of the system receives the first and second image data signals and produces third image data signals representing a recovered image of the object of the degraded image in accordance with the first and second image data signals. In another embodiment, the imager captures a degraded image through atmospheric turbulence of a scene having a known reference object and an unknown object, and converts the degraded image into first image data signals. After receiving the first image data signals, the computer identifies in the first image data signals such image data signals representing the reference object. The computer produces image data signals representing a recovered image of the degraded image in accordance with the first image data signals, the image data signals representing the reference in the first image data signals, and image data signals representing an undegraded image of the reference. The computer may output the image data signals representing a recovered image to an output device to display or print the recovered image.
    • 提供了一种用于恢复通过大气湍流或其他大气不均匀性(例如雪,雨,烟雾,雾或水下波动)捕获的退化图像的系统,其具有用于通过这种湍流捕获至少具有至少一个场景的劣化图像 一个对象和与对象相关联的点源的图像。 成像器将退化图像转换为表示退化图像的第一图像数据信号,并将点源的图像转换为表示点扩散函数的第二图像数据信号。 系统的计算机接收第一和第二图像数据信号,并根据第一和第二图像数据信号产生表示退化图像的对象的恢复图像的第三图像数据信号。 在另一个实施例中,成像器通过具有已知参考对象和未知对象的场景的大气湍流捕获退化图像,并将退化图像转换为第一图像数据信号。 在接收到第一图像数据信号之后,计算机在第一图像数据信号中识别表示参考对象的图像数据信号。 计算机根据第一图像数据信号产生表示退化图像的恢复图像的图像数据信号,表示第一图像数据信号中的参考的图像数据信号和表示参考的未降级图像的图像数据信号。 计算机可以将表示恢复的图像的图像数据信号输出到输出装置,以显示或打印恢复的图像。
    • 8. 发明授权
    • Optical systems using volume holographic elements to provide arbitrary
space-time characteristics, including frequency-and/or
spatially-dependent delay lines, chirped pulse compressors, pulse
hirpers, pulse shapers, and laser resonators
    • 使用体积全息元件提供任意时空特性的光学系统,包括频率和/或空间相关的延迟线,啁啾脉冲压缩器,脉冲抽头,脉冲整形器和激光谐振器
    • US4834474A
    • 1989-05-30
    • US45991
    • 1987-05-01
    • Nicholas GeorgeThomas W. Stone
    • Nicholas GeorgeThomas W. Stone
    • G02B5/32G03H1/04H01S3/00
    • G03H1/0248G02B5/32H01S3/005G03H2001/043H01S3/0057Y10S372/70
    • Optical systems, using volume holographic elements (gratings) having geometries which tailor the spatio-temporal dispersion of the optical pulses for the system. The input optical pulse is characterized by a frequency variation across the temporal profile of the pulse. The various frequency components of this pulse are first dispersed by at least one grating which may be of the blazed reflection or holographic volume transmission type. The resultant dispersed light is then diffracted by a holographic volume grating which imparts the desired temporal dispersion characteristics to the pulse. The shape of the holographic element will vary according to the input pulse frequency profile as formed by varied chirping techniques. A grating stage may then be repeated, preferably with additional elements in mirror symmetry to the first or by retro-reflection, in order to recombine the spatially dispersed pulse components into an exiting pulse which may be of vastly compressed temporal profile. In optical dispersive delay lines, the grating geometry provides temporal dispersion which is a desired function of wavelength of the optical pulses.
    • 光学系统,使用具有定制系统的光脉冲的时空色散的几何的体积全息元件(光栅)。 输入光脉冲的特征在于脉冲的时间曲线上的频率变化。 该脉冲的各种频率分量首先通过至少一个可能具有闪耀反射或全息体积传播类型的光栅来分散。 然后,所得到的散射光被全息体积光栅衍射,该全息体积光栅将期望的时间色散特性赋予脉冲。 全息元件的形状将根据由不同啁啾技术形成的输入脉冲频率分布而变化。 然后可以重复光栅平台,优选地具有与第一或反射反射镜对称的附加元件,以将空间分散的脉冲分量重新组合成可能具有极大压缩的时间特征的出射脉冲。 在光学色散延迟线中,光栅几何形状提供时间色散,其是光脉冲的波长的期望函数。
    • 9. 发明授权
    • Digital binary MEMS wavefront control
    • 数字二进制MEMS波前控制
    • US08379292B2
    • 2013-02-19
    • US13286659
    • 2011-11-01
    • Nicholas GeorgeKedar Khare
    • Nicholas GeorgeKedar Khare
    • G02B26/00
    • G02B27/1086G02B26/06G02B27/0025G02B27/144G02B27/149
    • A phase screen, i.e., an opto-electronic device that can convert a distorted incoming optical wavefront into a plane wave or, conversely, transform a plane wave into a prescribed varying output wavefront. Binary all-digital MEMS interferometer configurations that can be used to create controlled and arbitrary optical wavefront using only 0,1 amplitude changes followed by differential propagation distances to convert these amplitude variations into controllable and/or continuous phase variations. Clustered pixel notions, such as Floyd-Steinberg, Stucki or other algorithms useful in digital half-tone printing, are simultaneously employed to create controllable grey-level variations as well as continuous phase variations. Desired grey-levels can be obtained wherein each pixel is formed by, e.g., a 3×3 or 5×5 cluster of mirrors. Both the filling-in of the outputs of the binary mirror (0,1) and the grey-levels are accomplished simply by spatial averaging over a short propagation distance.
    • 相位屏幕,即可将失真的入射光波前转换成平面波的光电器件,或相反地将平面波变换成规定的变化输出波前。 二进制全数字MEMS干涉仪配置,可用于仅使用0.1个振幅变化创建受控和任意的光波阵面,随后是差分传播距离,将这些幅度变化转换为可控和/或连续的相位变化。 同时使用诸如Floyd-Steinberg,Stucki或其他可用于数字半色调打印的算法的聚类像素概念来创建可控的灰度级变化以及连续的相位变化。 可以获得期望的灰度级,其中每个像素由例如3×3或5×5的反射镜簇形成。 二进制镜(0,1)的输出和灰度级的输入都可以简单地通过短的传播距离进行空间平均来完成。