会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明申请
    • CRYPTOGRAPHY ON A SIMPLIFIED ELLIPTICAL CURVE
    • 简化的ELLIPTICAL曲线的曲线图
    • WO2010146303A3
    • 2011-03-03
    • PCT/FR2010051191
    • 2010-06-15
    • MORPHOICART THOMAS
    • ICART THOMAS
    • H04L9/30G06F7/72
    • H04L9/3066G06F7/725G06F2207/7261H04L9/005H04L2209/08H04L2209/26
    • A cryptographic calculation is carried out in an electronic component, comprising a step of obtaining a point P(X,Y) from at least one parameter t, on an elliptical curve satisfying the equation: Y2 = f(X) and from polynomials Xi(t), X2(t) and U(t) satisfying the following equality: -f(X1(t)).f(X2(t)) = U(t)2 in the finite body Fq, irrespective of the parameter t, q satisfying the equation q = 3 mod 4. A value of the parameter t is obtained and then the point P is determined by carrying out the following substeps: (i) X1= X1(t), X2= X2(t) and U=U(t) are calculated (step 11); (ii) it is tested (step 12) whether the term f(X-1) is a squared term in the finite body Fq and, if so, the square root of the term f(X1) is calculated (step 13), the point P having X1 as abscissa and Y1, the square root of the term f(X1), as ordinate; (iii) otherwise, the square root of the term f(X2) is calculated (step 14), the point P having X2, as abscissa and Y2, the square root of the term f(X2), as ordinate. This point P can then be used in an encryption or scrambling or signature or authentication or identification cryptographic application.
    • 在电子部件中进行加密计算,包括从满足以下等式:Y2 = f(X)的椭圆曲线上获得来自至少一个参数t的点P(X,Y)和从多项式Xi( t),X2(t)和U(t)满足以下等式:-f(X1(t))。f(X2(t))= U(t)2在有限体Fq中, ,q满足方程q = 3 mod 4.获得参数t的值,然后通过执行以下子步骤确定点P:(i)X1 = X1(t),X2 = X2(t)和 计算U = U(t)(步骤11); (ii)测试(步骤12)f(X-1)是否是有限体Fq中的平方项,如果是,则计算项f(X1)的平方根(步骤13) 点P的X1为横坐标,Y1为项f(X1)的平方根,为纵坐标; (iii)否则,计算术语f(X2)的平方根(步骤14),点P具有X2作为横坐标,Y2是项f(X2)的平方根,作为纵坐标。 该点P然后可用于加密或加密或签名或认证或标识加密应用程序。
    • 2. 发明申请
    • CRYPTOGRAPHY ON A ELLIPTICAL CURVE
    • 椭圆曲线的曲线图
    • WO2010146302A3
    • 2011-03-03
    • PCT/FR2010051190
    • 2010-06-15
    • MORPHOICART THOMASCORON JEAN-SEBASTIEN
    • ICART THOMASCORON JEAN-SEBASTIEN
    • H04L9/28G06F7/58G06F17/10
    • G06F7/725G06F2207/7261H04L9/3066
    • A cryptographic calculation is performed in an electronic component, comprising the step of obtaining a point P(X,Y) from a parameter t on an elliptical curve of equation: Y2 = f(X); and from polynomials X1(t), X2(t), X3(t) and U(t) satisfying the equality: f(X1(t)).f(X2(t)).f(X3(t))=U(t)2 in Fq, with q = 3 mod 4. Firstly a value of the parameter t is obtained. Next, the point P is determined by carrying out the following substeps: (i) X1= X1(t), X2= X2(t), X3= X3(t) and U=U(t) are calculated; (ii) if the term f(X1).f(X2) is a square, then it is tested whether the term f(X3) is a square in Fq and if so the square root of f(X3) is calculated, in order to obtain the point P(X3); (iii) otherwise, it is tested whether the term f(X?) is a square and, if so, the square root of f(X1) is calculated, in order to obtain the point P(X1,); (iv) otherwise, the square root of f(X2) is calculated in order to obtain the point P(X2). This point P can then be used in a cryptographic application.
    • 在电子部件中执行密码计算,其特征在于,包括从等式:Y2 = f(X)的椭圆曲线上的参数t获得点P(X,Y)的步骤; (x(t))f(X(t))= f(X 1(t))f(x(t))= U(t)2在Fq中,q = 3 mod 4.首先获得参数t的值。 接下来,通过执行以下子步骤来确定点P:(i)X1 = X1(t),X2 = X2(t),X3 = X3(t),U = U(t) (ii)如果术语f(X1).f(X2)是一个平方,则测试f(X3)是否是Fq中的平方,如果是,则计算f(X3)的平方根, 为了获得点P(X3); (iii)否则,测试f(X?)是否为平方,如果是,则计算f(X1)的平方根,以获得点P(X1); (iv)否则,为了获得点P(X2),计算f(X2)的平方根。 此点P可以在密码应用程序中使用。
    • 3. 发明申请
    • METHOD OF EXECUTING A CRYPTOGRAPHIC CALCULATION
    • 执行克氏计算的方法
    • WO2008145936A3
    • 2009-02-19
    • PCT/FR2008050817
    • 2008-05-09
    • SAGEM SECURITECHABANNE HERVEBRINGER JULIENICART THOMAS
    • CHABANNE HERVEBRINGER JULIENICART THOMAS
    • H04L9/32H04L9/08
    • H04L9/0866H04L9/0836H04L9/321H04L2209/805
    • A cryptographic calculation is executed in an electronic component, according to a cryptographic algorithm including at least one application of a one-way function which is disabled upon an intrusion into the electronic component. The one-way function is based on a first affine operation corresponding to a first secret key. The one-way function is applied, by obtaining (11) first and second random values (r, r'), then, by obtaining a first result (13) by applying a second affine operation (sK1), which corresponds to a second secret key, to a first combination (12) of the first and second random values, and, by obtaining (14) thereafter a second result by applying a third affine operation (OK2), which corresponds to a third secret key, to said first result. The combination of the third and second affine operations (sK2 o sK1) corresponds to the first affine operation; and a cryptographic operation is moreover applied (15) to one at least among said second result and a second combination of the first and second random values.
    • 根据密码算法,在电子部件中执行加密计算,所述加密算法包括在侵入电子部件时被禁用的单向功能的至少一个应用。 单向功能基于对应于第一秘密密钥的第一仿射操作。 通过获得(11)第一和第二随机值(r,r')来应用单向函数,然后通过应用第二仿真运算(sK1)获得第一结果(13),其对应于第二 秘密密钥到第一和第二随机值的第一组合(12),并且此后通过将对应于第三密钥的第三仿射操作(OK2)应用于所述第一和第二随机值, 结果。 第三和第二仿射操作(sK2 o sK1)的组合对应于第一仿射操作; 并且至少在所述第二结果和第一和第二随机值的第二组合中至少应用(15)至一个加密操作。
    • 6. 发明专利
    • CRYPTOGRAPHIE SUR UNE COURBE ELLIPTIQUE SIMPLIFIEE
    • CA2765652C
    • 2017-11-21
    • CA2765652
    • 2010-06-15
    • MORPHO
    • ICART THOMAS
    • H04L9/30G06F7/58G06F7/72G06F17/10H04L9/28
    • Dans un composant électronique, on exécute un calcul cryptographique comprenant une étape d'obtention d'un point P(X1Y) à partir d'au moins un paramètre t, sur une courbe elliptique vérifiant l'équation : Y2 = f (X); et à partir de polynômes Xi(t), X2(t) et U(t) vérifiant l'égalité suivante : -f(X1(t)).f(X2(t)) = U(t)2 dans le corps fini Fq, quel que soit le paramètre t, q vérifiant l'équation q = 3 mod 4. On obtient une valeur du paramètre t. Puis, on détermine le point P en effectuant les sous étapes suivantes : /i/ calculer X1= X1(t), X2= X2(t) et U=U(t) (étape 1 1 ) /ii/ tester (12) si le terme f(X-1) est un terme au carré dans le corps fini Fq et dans ce cas, calculer (13) la racine carré du terme f(X1), le point P ayant pour abscisse X1 et pour ordonnée Y1 la racine carré du terme f(X1). /iii/ sinon calculer (14) la racine carré du terme f(X2), le point P ayant pour abscisse X2 et pour ordonnée Y2 la racine carré du terme f(X2). Ensuite, on peut utiliser ce point P dans une application cryptographique de chiffrement ou de hachage ou de signature ou d'authentification ou d'identification.
    • 7. 发明专利
    • Criptografía sobre una curva elíptica simplificada
    • ES2427740T3
    • 2013-10-31
    • ES10738014
    • 2010-06-15
    • MORPHO
    • ICART THOMAS
    • H04L9/30G06F7/58G06F7/72G06F17/10H04L9/28
    • Un procedimiento de ejecución de un cálculo criptográfico en un componente electrónico que comprende unaetapa de obtención de un punto P(X,Y) a partir de al menos un parámetro t, sobre una curva elíptica que verifica laecuación: Y2 >= f(X); y a partir de polinomios X1(t), X2(t) y U(t) que verifican la igualdad siguiente: -f(X1 (t)).f(X2(t))>=U(t)2 en el cuerpo finito Fq, cualquiera que sea el parámetro t, q verificando la ecuación q >= 3 mod 4; comprendiendo dicho procedimiento las etapas siguientes: /1/ obtener un valor del parámetro t; /2/ determinar el punto P efectuando las subetapas siguientes: /i/ calcular (11) X1 >= X1(t), X2 >= (X2(t) y U>=U(t) /ii/ probar (12) si el término f(X1) es un término al cuadrado en el cuerpo finito Fq y en este caso, calcular (13) la raíz cuadrada del término f(X1), teniendo el punto P por abscisa X1 y por ordenada Y1 laraíz cuadrada del término f(X1); /iii/ si no calcular (14) la raíz cuadrada del término f(X2), teniendo el punto P porabscisa X2 y por ordenada Y2 la raíz cuadrada del término f(X2); /3/ utilizar dicho punto P en una aplicación criptografía sea de cifrado o de aplicación defunciones hash o de firma de autentificación o de identificación.
    • 8. 发明专利
    • CRYPTOGRAPHY BY PARAMETERIZING ON ELLIPTIC CURVE
    • SG177409A1
    • 2012-02-28
    • SG2011097052
    • 2010-06-28
    • MORPHO
    • ICART THOMASCHABANNE HERVE
    • CRYPTOGRAPHY BY PARAMETERIZING ON ELLIPTIC CURVE AbstractThe invention relates to the implementation of the control of a device (10) by acontroller (11) on the basis of a password (TT). For this purpose, the invention comprises determining (21), at the device or at the controller and on the basis of a random value r1, a point P(X,Y) on an elliptic curve in a finite body Fa, q being an integer, according to the equation: Ea, b (x, y) : x3+ ax + b = y2 (1). The invention thencomprises obtaining (22) first and second parameters k and k', such that P(X,Y)=F(K,k'), where F is a surjective function of FaxFa, in Fa, and then obtaining (23) the first and second parameters in an encrypted format by encryption in accordance with the password. The invention finally comprises transmitting (24) the first and second encrypted parameters to the controller. During the control, thefunction F is used, such that, whatever the values of z and z', which are input elements of Fa, F(z,z') is a point on the elliptic curve and the input elements do not satisfy the equation (1).Fig. 2