会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 3. 发明申请
    • LIGHT SOURCE TRACKING IN OPTICAL METROLOGY SYSTEM
    • 光学系统系统中的光源跟踪
    • WO2013066899A1
    • 2013-05-10
    • PCT/US2012/062624
    • 2012-10-30
    • KLA-TENCOR CORPORATION
    • ZHUANG, Guorong VeraKRISHNAN, ShankarDE VEER, Johannes D.FLOCK, KlausWANG, David Y.ROTTER, Lawrence D.
    • G01N21/01G01N21/88
    • G01J3/0264G01B2210/56G01J3/0208G01J3/0278G01J3/06G01J3/10G01N21/4785
    • The present invention may include loading a diagnostic sample onto a sample stage, focusing light from an illumination source disposed on a multi-axis stage onto the diagnostic sample, collecting a portion of light reflected from a surface of the diagnostic sample utilizing a detector, wherein the illumination source and the detector are optically direct-coupled via an optical system, acquiring a set of diagnostic parameters indicative of illumination source position drift from the diagnostic sample, determining a magnitude of the illumination source position drift by comparing the acquired set of diagnostic parameters to an initial set of parameters obtained from the diagnostic sample at a previously measured alignment condition, determining a direction of the illumination source position drift; and providing illumination source position adjustment parameters configured to correct the determined magnitude and direction of the illumination source position drift to the multi-axis actuation control system of the multi-axis stage.
    • 本发明可以包括将诊断样本加载到样本台上,将来自设置在多轴平台上的照明源的光聚焦到诊断样本上,利用检测器收集从诊断样品的表面反射的一部分光,其中 照明源和检测器通过光学系统光学直接耦合,获取指示来自诊断样本的照明源位置漂移的一组诊断参数,通过比较所获取的诊断参数集合来确定照明源位置漂移的大小 到在先前测量的对准条件下从诊断样本获得的初始参数集合,确定照明源位置漂移的方向; 以及提供照明源位置调整参数,其被配置为校正所确定的照明源位置漂移的大小和方向到所述多轴平台的多轴致动控制系统。
    • 4. 发明申请
    • INFRARED SPECTROSCOPIC REFLECTOMETER FOR MEASUREMENT OF HIGH ASPECT RATIO STRUCTURES
    • 用于测量高高比结构的红外光谱反射仪
    • WO2018064227A1
    • 2018-04-05
    • PCT/US2017/053825
    • 2017-09-27
    • KLA-TENCOR CORPORATION
    • KRISHNAN, ShankarWANG, David Y.
    • G01B9/02G01B11/02
    • Methods and systems for performing spectroscopic reflectometry measurements of semiconductor structures at infrared wavelengths are presented herein. In some embodiments measurement wavelengths spanning a range from 750 nanometers to 2,600 nanometers, or greater, are employed. In one aspect, reflectometry measurements are performed at oblique angles to reduce the influence of backside reflections on measurement results. In another aspect, a broad range of infrared wavelengths are detected by a detector that includes multiple photosensitive areas having different sensitivity characteristics. Collected light is linearly dispersed across the surface of the detector according to wavelength. Each different photosensitive area is arranged on the detector to sense a different range of incident wavelengths. In this manner, a broad range of wavelengths are detected with high signal to noise ratio by a single detector.
    • 本文给出了用于执行红外波长下的半导体结构的光谱反射测量的方法和系统。 在一些实施例中,采用跨越750纳米至2600纳米或更大范围的测量波长。 在一个方面,反射测量测量以斜角执行以减少背面反射对测量结果的影响。 另一方面,由包括具有不同灵敏度特性的多个光敏区域的检测器检测宽范围的红外波长。 收集到的光根据波长线性分散在检测器表面上。 每个不同的光敏区域被布置在检测器上以感测不同范围的入射波长。 以这种方式,通过单个检测器以高信噪比检测宽范围的波长。
    • 6. 发明申请
    • SIMULTANEOUS MULTI-ANGLE SPECTROSCOPY
    • 同时进行多角度光谱分析
    • WO2017214314A1
    • 2017-12-14
    • PCT/US2017/036417
    • 2017-06-07
    • KLA-TENCOR CORPORATION
    • KRISHNAN, ShankarBUETTNER, AlexanderPURRUCKER, KerstinWANG, David Y.
    • H01L21/66H01L21/67
    • Methods and systems for performing simultaneous spectroscopic measurements of semiconductor structures over a broad range of angles of incidence (AOI), azimuth angles, or both, are presented herein. Spectra including two or more sub-ranges of angles of incidence, azimuth angles, or both, are simultaneously measured over different sensor areas at high throughput. Collected light is linearly dispersed across different photosensitive areas of one or more detectors according to wavelength for each subrange of AOIs, azimuth angles, or both. Each different photosensitive area is arranged on the one or more detectors to perform a separate spectroscopic measureement for each different range of AOIs, azimuth angles, or both. In this manner, a broad range of AOIs, azimuth angles, or both, are detected with high signal to noise ratio, simultaneously. This approach enables high throughput measurements of high aspect ratio structures with high throughput, precision, and accuracy.
    • 本文给出了用于在宽范围的入射角(AOI),方位角或两者上执行半导体结构的同时光谱测量的方法和系统。 包括入射角,方位角或两者的两个或更多个子范围的光谱在高吞吐量下在不同传感器区域上同时测量。 根据AOI的每个子范围,方位角或两者的波长,收集的光线线性分散在一个或多个检测器的不同光敏区域上。 每个不同的光敏区域被布置在一个或多个检测器上以针对AOI的每个不同范围,方位角或两者执行单独的光谱测量。 以这种方式,同时检测具有高信噪比的宽范围的AOI,方位角或两者。 这种方法可实现高吞吐量,高吞吐量,高精度和高准确度的高宽比结构测量。
    • 7. 发明申请
    • SYSTEMS AND METHODS FOR EXTENDED INFRARED SPECTROSCOPIC ELLIPSOMETRY
    • 扩展的红外光谱椭圆测量系统和方法
    • WO2017123467A1
    • 2017-07-20
    • PCT/US2017/012502
    • 2017-01-06
    • KLA-TENCOR CORPORATION
    • KRISHNAN, ShankarWANG, David Y.
    • H01L21/66G03F7/20
    • G01N21/3563G01J3/0224G01J3/18G01J3/2803G01J3/36G01J3/427G01J2003/4275G01N21/211G01N21/31G01N21/9501G01N2021/213G01N2021/3568
    • Methods and systems for performing simultaneous spectroscopic measurements of semiconductor structures at ultraviolet, visible, and infrared wavelengths are presented herein. In another aspect, wavelength errors are reduced by orienting the direction of wavelength dispersion on the detector surface perpendicular to the projection of the plane of incidence onto the detector surface. In another aspect, a broad range of infrared wavelengths are detected by a detector that includes multiple photosensitive areas having different sensitivity characteristics. Collected light is linearly dispersed across the surface of the detector according to wavelength. Each different photosensitive area is arranged on the detector to sense a different range of incident wavelengths. In this manner, a broad range of infrared wavelengths are detected with high signal to noise ratio by a single detector. These features enable high throughput measurements of high aspect ratio structures with high throughput, precision, and accuracy.
    • 本文给出了用于在紫外,可见和红外波长下执行半导体结构的同时光谱测量的方法和系统。 另一方面,通过将检测器表面上的波长色散的方向垂直于入射平面的投影定向到检测器表面上来减小波长误差。 另一方面,由包括具有不同灵敏度特性的多个光敏区域的检测器检测宽范围的红外波长。 收集到的光根据波长线性分散在检测器表面上。 每个不同的光敏区域被布置在检测器上以感测不同范围的入射波长。 以这种方式,通过单个检测器以高信噪比检测宽范围的红外波长。 这些功能可实现高吞吐量,高吞吐量,高精度和高精度的高宽比结构测量。
    • 8. 发明申请
    • BROADBAND AND WIDE FIELD ANGLE COMPENSATOR
    • 宽带和宽场角度补偿器
    • WO2015027200A1
    • 2015-02-26
    • PCT/US2014/052373
    • 2014-08-22
    • KLA-TENCOR CORPORATION
    • ROTTER, LawrenceFLOCK, KlausARAIN, MuzammilWANG, David Y.
    • H01L21/66
    • G01N21/23G01N21/211G01N21/9501G01N2021/213G01N2201/068G02B5/3083G02B5/3091G02F1/13363
    • A rotatable compensator configured to transmit non-collimated light over a broad range of wavelengths, including ultraviolet, with a high degree of retardation uniformity across the aperture is presented. In one embodiment, a rotatable compensator includes a stack of four individual plates in optical contact. The two thin plates in the middle of the stack are made from a birefringent material and are arranged to form a compound, zeroth order bi-plate. The remaining two plates are relatively thick and are made from an optically isotropic material. These plates are disposed on either end of the compound, zeroth order bi-plate. The low order plates minimize the sensitivity of retardation across the aperture to non-collimated light. Materials are selected to ensure transmission of ultraviolet light. The optically isotropic end plates minimize coherence effects induced at the optical interfaces of the thin plates.
    • 提供了一种可旋转补偿器,其被配置为在宽范围的波长(包括紫外线)上传输非准直光,并且在整个孔径上具有高程度的延迟均匀性。 在一个实施例中,可旋转补偿器包括光学接触的四个单独板的堆叠。 堆叠中间的两个薄板由双折射材料制成并且被布置成形成复合物,零级双板。 剩余的两个板相对较厚并且由光学各向同性材料制成。 这些板设置在化合物的任一端,为零级双板。 低阶平板将通过光圈的延迟的灵敏度最小化为非准直光。 选择材料以确保紫外线的透射。 光学各向同性的端板最小化在薄板的光学界面处引起的相干效应。