会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 3. 发明授权
    • Nano graphene reinforced nanocomposite particles for lithium battery electrodes
    • 用于锂电池电极的纳米石墨烯增强纳米复合颗粒
    • US08580432B2
    • 2013-11-12
    • US12315555
    • 2008-12-04
    • Aruna ZhamuBor Z. JangJinjun Shi
    • Aruna ZhamuBor Z. JangJinjun Shi
    • H01M4/02
    • H01M4/587H01M4/133H01M10/0525
    • A solid nanocomposite particle composition for lithium metal or lithium ion battery electrode applications. The composition comprises: (A) an electrode active material in a form of fine particles, rods, wires, fibers, or tubes with a dimension smaller than 1 μm; (B) nano graphene platelets (NGPs); and (C) a protective matrix material reinforced by the NGPs; wherein the graphene platelets and the electrode active material are dispersed in the matrix material and the NGPs occupy a weight fraction wg of 1% to 90% of the total nanocomposite weight, the electrode active material occupies a weight fraction wa of 1% to 90% of the total nanocomposite weight, and the matrix material occupies a weight fraction wm of at least 2% of the total nanocomposite weight with wg+wa+wm=1. For a lithium ion battery anode application, the matrix material is preferably amorphous carbon, polymeric carbon, or meso-phase carbon. Such a solid nanocomposite composition provides a high anode capacity and good cycling stability. For a cathode application, the resulting lithium metal or lithium ion battery exhibits an exceptionally high cycle life.
    • 一种用于锂金属或锂离子电池电极应用的固体纳米复合颗粒组合物。 组合物包括:(A)尺寸小于1μm的细颗粒,棒,线,纤维或管的形式的电极活性材料; (B)纳米石墨烯血小板(NGPs); 和(C)由NGP加强的保护性基质材料; 其中石墨烯片晶和电极活性材料分散在基体材料中,NGP占总纳米复合材料重量的1%至90%的重量分数wg,电极活性材料占重量分数wa为1%至90% 的总纳米复合材料重量,并且基质材料占ww + wa + wm = 1的总纳米复合材料重量的至少2%的重量分数wm。 对于锂离子电池阳极应用,基体材料优选为无定形碳,聚合碳或中间相碳。 这种固体纳米复合材料组合物提供高的阳极容量和良好的循环稳定性。 对于阴极应用,所得到的锂金属或锂离子电池具有非常高的循环寿命。
    • 4. 发明授权
    • Low-temperature method of producing nano-scaled graphene platelets and their nanocomposites
    • 生产纳米级石墨烯血小板及其纳米复合材料的低温方法
    • US08132746B2
    • 2012-03-13
    • US11787442
    • 2007-04-17
    • Aruna ZhamuJinjun ShiJiusheng GuoBor Z. Jang
    • Aruna ZhamuJinjun ShiJiusheng GuoBor Z. Jang
    • B02C19/00
    • B82Y40/00B82Y30/00C01B32/15C01B32/184C01B32/22C01B32/225C01B32/23
    • A method of exfoliating a layered material to produce separated nano-scaled platelets having a thickness smaller than 100 nm. The method comprises: (a) providing a graphite intercalation compound comprising a layered graphite containing expandable species residing in an interlayer space of the layered graphite; (b) exposing the graphite intercalation compound to an exfoliation temperature lower than 650° C. for a duration of time sufficient to at least partially exfoliate the layered graphite without incurring a significant level of oxidation; and (c) subjecting the at least partially exfoliated graphite to a mechanical shearing treatment to produce separated platelets. The method can further include a step of dispersing the platelets in a polymer or monomer solution or suspension as a precursor step to nanocomposite fabrication.
    • 剥离层状材料以产生厚度小于100nm的分离的纳米尺寸血小板的方法。 该方法包括:(a)提供石墨插层化合物,其包含层状石墨,该层状石墨包含位于层状石墨的层间空间中的可膨胀物质; (b)将石墨插层化合物暴露于低于650℃的剥离温度持续足以至少部分地剥离层状石墨的时间,而不会引起显着水平的氧化; 和(c)使至少部分脱落的石墨经受机械剪切处理以产生分离的血小板。 该方法还可以包括将血小板分散在聚合物或单体溶液或悬浮液中作为前体步骤的纳米复合制备的步骤。
    • 5. 发明申请
    • Graphene nanocomposites for electrochemical cell electrodes
    • 用于电化学电池电极的石墨烯纳米复合材料
    • US20100021819A1
    • 2010-01-28
    • US12220651
    • 2008-07-28
    • Aruna ZhamuBor Z. JangJinjun Shi
    • Aruna ZhamuBor Z. JangJinjun Shi
    • H01M4/58
    • H01M4/587H01G9/058H01G11/36H01G11/38H01G11/42H01M4/133H01M4/1393H01M4/362H01M4/621H01M10/0525H01M2004/021H01M2004/022Y02E60/122Y02E60/13
    • A composite composition for electrochemical cell electrode applications, the composition comprising multiple solid particles, wherein (a) a solid particle is composed of graphene platelets dispersed in or bonded by a first matrix or binder material, wherein the graphene platelets are not obtained from graphitization of the first binder or matrix material; (b) the graphene platelets have a length or width in the range of 10 nm to 10 μm; (c) the multiple solid particles are bonded by a second binder material; and (d) the first or second binder material is selected from a polymer, polymeric carbon, amorphous carbon, metal, glass, ceramic, oxide, organic material, or a combination thereof. For a lithium ion battery anode application, the first binder or matrix material is preferably amorphous carbon or polymeric carbon. Such a composite composition provides a high anode capacity and good cycling response. For a supercapacitor electrode application, the solid particles preferably have meso-scale pores therein to accommodate electrolyte.
    • 一种用于电化学电池电极应用的复合组合物,所述组合物包含多个固体颗粒,其中(a)固体颗粒由分散在第一基质或粘合剂材料中或由第一基质或粘合剂材料粘合的石墨烯片晶组成,其中石墨烯片晶不是从石墨烯 第一粘合剂或基质材料; (b)石墨烯血小板的长度或宽度在10nm至10um范围内; (c)多个固体颗粒通过第二粘合剂材料粘合; 和(d)第一或第二粘合剂材料选自聚合物,聚合物碳,无定形碳,金属,玻璃,陶瓷,氧化物,有机材料或其组合。 对于锂离子电池阳极应用,第一粘合剂或基质材料优选为无定形碳或聚合碳。 这种复合组合物提供高阳极容量和良好的循环响应。 对于超级电容器电极应用,固体颗粒优选在其中具有中等尺度的孔以适应电解质。
    • 6. 发明申请
    • Laminated exfoliated graphite composite-metal compositions for fuel cell flow field plate or bipolar plate applications
    • 用于燃料电池流场板或双极板应用的层压剥离石墨复合金属组合物
    • US20080299419A1
    • 2008-12-04
    • US11807379
    • 2007-05-29
    • Aruna ZhamuJinjun ShiJiusheng GuoBor Z. Jang
    • Aruna ZhamuJinjun ShiJiusheng GuoBor Z. Jang
    • H01M8/02
    • H01M8/0228H01M8/0206H01M8/0213H01M8/0226Y10T428/24942
    • An electrically conductive laminate composition for fuel cell flow field plate or bipolar plate applications. The laminate composition comprises at least a thin metal sheet having two opposed exterior surfaces and a first exfoliated graphite composite sheet bonded to the first of the two exterior surfaces of the metal sheet wherein the exfoliated graphite composite sheet comprises: (a) expanded or exfoliated graphite and (b) a binder or matrix material to bond the expanded graphite for forming a cohered sheet, wherein the binder or matrix material is between 3% and 60% by weight based on the total weight of the first exfoliated graphite composite sheet. Preferably, the first exfoliated graphite composite sheet further comprises particles of non-expandable graphite or carbon in the amount of between 3% and 60% by weight based on the total weight of the non-expandable particles and the expanded graphite. Further preferably, the laminate comprises a second exfoliated graphite composite sheet bonded to the second surface of the metal sheet to form a three-layer laminate. Surface flow channels and other desired geometric features can be built onto the exterior surfaces of the laminate to form a flow field plate or bipolar plate. The resulting laminate has an exceptionally high thickness-direction conductivity and excellent resistance to gas permeation.
    • 一种用于燃料电池流场板或双极板应用的导电层压组合物。 所述层叠组合物至少包括具有两个相对的外表面的薄金属片和与所述金属片的两个外表面中的第一外表面结合的第一剥离石墨复合片,其中所述剥离石墨复合片包括:(a)膨胀或剥落的石墨 和(b)粘合剂或基质材料,以结合用于形成粘结片材的膨胀石墨,其中基于第一剥离石墨复合片材的总重量,粘合剂或基质材料为3重量%至60重量%。 优选地,基于不可膨胀颗粒和膨胀石墨的总重量,第一剥离石墨复合片材还包含不可膨胀石墨或碳的颗粒,其量为3重量%至60重量%。 进一步优选地,层压体包括结合到金属板的第二表面的第二剥离石墨复合片,以形成三层层压体。 可以在层压板的外表面上形成表面流动通道和其它期望的几何特征,以形成流场板或双极板。 所得到的层压体具有非常高的厚度方向导电性和优异的耐气体渗透性。
    • 7. 发明授权
    • Graphite or carbon particulates for the lithium ion battery anode
    • 用于锂离子电池阳极的石墨或碳颗粒
    • US09437344B2
    • 2016-09-06
    • US12804413
    • 2010-07-22
    • Aruna ZhamuJinjun ShiGuorong ChenQing FangBor Z. JangMing C. Wang
    • Aruna ZhamuJinjun ShiGuorong ChenQing FangBor Z. JangMing C. Wang
    • B32B9/00H01B1/12C01B31/04H01M4/133H01M4/587H01M10/0525
    • H01B1/122C01B32/20H01M4/133H01M4/587H01M10/0525Y02T10/7011Y10T428/30
    • This invention provides a graphite or graphite-carbon particulate for use as a lithium secondary battery anode material having a high-rate capability. The particulate is formed of a core carbon or graphite particle and a plurality of satellite carbon or graphite particles that are each separately bonded to the core particle wherein the core particle is spherical in shape, slightly elongate in shape with a major axis-to-minor axis ratio less than 2, or fibril in shape, and wherein the satellite particles are disc-, platelet-, or flake-like particles each containing a graphite crystallite with a crystallographic c-axis dimension Lc and a lateral dimension. Preferably, Lc is less than 100 nm and the flake/platelet lateral dimension is less than 1 μm. The core particle may be selected from natural graphite, artificial graphite, spherical graphite, graphitic coke, meso-carbon micro-bead, soft carbon, hard carbon, graphitic fibril, carbon nano-fiber, carbon fiber, or graphite fiber. Preferably, the flat-shaped particles are randomly oriented with respect to one another.
    • 本发明提供一种用作具有高速率能力的锂二次电池负极材料的石墨或石墨 - 碳颗粒。 颗粒由芯碳或石墨颗粒和多个卫星碳或石墨颗粒形成,每个卫星碳或石墨颗粒分别与核心颗粒结合,其中核心颗粒是球形的,具有略长的形状,具有长轴对次要的 轴比小于2,或原纤维形状,并且其中卫星颗粒是盘状,片状或片状颗粒,每个颗粒含有具有晶体c轴尺寸Lc和横向尺寸的石墨微晶。 优选地,Lc小于100nm,片/横板尺寸小于1μm。 核心颗粒可以选自天然石墨,人造石墨,球形石墨,石墨焦炭,内消旋碳微珠,软碳,硬碳,石墨原纤,碳纳米纤维,碳纤维或石墨纤维。 优选地,扁平形颗粒相对于彼此是随机取向的。
    • 8. 发明授权
    • Graphene nanocomposites for electrochemical cell electrodes
    • 用于电化学电池电极的石墨烯纳米复合材料
    • US09190667B2
    • 2015-11-17
    • US12220651
    • 2008-07-28
    • Aruna ZhamuBor Z. JangJinjun Shi
    • Aruna ZhamuBor Z. JangJinjun Shi
    • H01M4/13H01M4/587H01G9/04H01G11/36H01G11/38H01G11/42H01M4/133H01M4/1393H01M4/36H01M4/62H01M10/0525H01M4/02
    • H01M4/587H01G9/058H01G11/36H01G11/38H01G11/42H01M4/133H01M4/1393H01M4/362H01M4/621H01M10/0525H01M2004/021H01M2004/022Y02E60/122Y02E60/13
    • A composite composition for electrochemical cell electrode applications, the composition comprising multiple solid particles, wherein (a) a solid particle is composed of graphene platelets dispersed in or bonded by a first matrix or binder material, wherein the graphene platelets are not obtained from graphitization of the first binder or matrix material; (b) the graphene platelets have a length or width in the range of 10 nm to 10 μm; (c) the multiple solid particles are bonded by a second binder material; and (d) the first or second binder material is selected from a polymer, polymeric carbon, amorphous carbon, metal, glass, ceramic, oxide, organic material, or a combination thereof. For a lithium ion battery anode application, the first binder or matrix material is preferably amorphous carbon or polymeric carbon. Such a composite composition provides a high anode capacity and good cycling response. For a supercapacitor electrode application, the solid particles preferably have meso-scale pores therein to accommodate electrolyte.
    • 一种用于电化学电池电极应用的复合组合物,所述组合物包含多个固体颗粒,其中(a)固体颗粒由分散在第一基质或粘合剂材料中或由第一基质或粘合剂材料粘合的石墨烯片晶组成,其中石墨烯片晶不是从石墨烯 第一粘合剂或基质材料; (b)石墨烯片晶的长度或宽度在10nm至10μm的范围内; (c)多个固体颗粒通过第二粘合剂材料粘合; 和(d)第一或第二粘合剂材料选自聚合物,聚合物碳,无定形碳,金属,玻璃,陶瓷,氧化物,有机材料或其组合。 对于锂离子电池阳极应用,第一粘合剂或基质材料优选为无定形碳或聚合碳。 这种复合组合物提供高阳极容量和良好的循环响应。 对于超级电容器电极应用,固体颗粒优选在其中具有中等尺度的孔以适应电解质。
    • 9. 发明授权
    • Method of producing exfoliated graphite composite compositions for fuel cell flow field plates
    • 生产燃料电池流场板用剥离石墨复合材料组合物的方法
    • US08691129B2
    • 2014-04-08
    • US11800730
    • 2007-05-08
    • Aruna ZhamuJinjun ShiJiusheng GuoBor Z. Jang
    • Aruna ZhamuJinjun ShiJiusheng GuoBor Z. Jang
    • B29C43/00
    • B22F1/0059B22F2998/10B22F3/02
    • A method of producing an electrically conductive composite composition, which is particularly useful for fuel cell bipolar plate applications. The method comprises: (a) providing a supply of expandable graphite powder; (b) providing a supply of a non-expandable powder component comprising a binder or matrix material; (c) blending the expandable graphite with the non-expandable powder component to form a powder mixture wherein the non-expandable powder component is in the amount of between 3% and 60% by weight based on the total weight of the powder mixture; (d) exposing the powder mixture to a temperature sufficient for exfoliating the expandable graphite to obtain a compressible mixture comprising expanded graphite worms and the non-expandable component; (e) compressing the compressible mixture at a pressure within the range of from about 5 psi to about 50,000 psi in predetermined directions into predetermined forms of cohered graphite composite compact; and (f) treating the so-formed cohered graphite composite to activate the binder or matrix material thereby promoting adhesion within the compact to produce the desired composite composition. Preferably, the non-expandable powder component further comprises an isotropy-promoting agent such as non-expandable graphite particles. Further preferably, step (e) comprises compressing the mixture in at least two directions. The method leads to composite plates with exceptionally high thickness-direction electrical conductivity.
    • 一种制造导电复合材料组合物的方法,其特别适用于燃料电池双极板应用。 该方法包括:(a)提供可膨胀石墨粉的供应; (b)提供包含粘合剂或基质材料的不可膨胀粉末组分的供应; (c)将可膨胀石墨与不可发泡粉末组分混合以形成粉末混合物,其中基于粉末混合物的总重量,不可发泡粉末组分的量为3重量%至60重量%; (d)将粉末混合物暴露于足以剥离可膨胀石墨的温度以获得包含膨胀石墨蠕虫和不可膨胀组分的可压缩混合物; (e)在预定方向上以约5psi至约50,000psi范围内的压力将可压缩混合物压缩成预定形式的粘结石墨复合材料; 和(f)处理如此形成的粘结石墨复合材料以活化粘合剂或基质材料,从而促进压块内的粘合以产生所需的复合组合物。 优选地,不可膨胀粉末组分还包含各向同性促进剂,例如不可膨胀石墨颗粒。 进一步优选地,步骤(e)包括在至少两个方向压缩混合物。 该方法导致具有非常高的厚度方向电导率的复合板。