会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明申请
    • Method of generating random numbers
    • 产生随机数的方法
    • US20100030829A1
    • 2010-02-04
    • US12379964
    • 2009-03-05
    • Hiroshi NakazawaNaoya Nakazawa
    • Hiroshi NakazawaNaoya Nakazawa
    • G06F7/58
    • G06F7/586
    • A method of obtaining uniform and independent random numbers is given (a) comprising two distinct odd primes p1, p2 that give mutually coprime integers q1=(p1−1)/2 and q2=(p2−1)/2 with different parity to form the modulus d=p1p2; (b) comprising primitive roots z1, z2 of primes p1, p2, respectively, giving congruence relations z≡zj mod (pj) for j=1, 2 that determine the multiplier z; and (c) comprising the initial value n coprime with d=p1p2. The method generates the coset sequence n ={r1=n, r2, r3, . . . } of period T=2q1q2 recursively by rj+1=zrj mod (d) for j=1, 2, . . . in the reduced residue class group Z*d, giving {v1=r1/d, v2=r2/d, . . . } for output.
    • 给出了一种获得均匀和独立随机数的方法(a),其包括两个不同奇数素数p1,p2,它们给出相互互补的整数q1 =(p1-1)/ 2和q2 =(p2-1)/ 2,具有不同的奇偶校验 形成模量d = p1p2; (b)分别包括素数p1,p2的原始根z1,z2,给出确定乘数z的j = 1,2的一致关系z≡zjmod(pj) 和(c)包括具有d = p1p2的初始值n互质。 该方法产生陪集序列n z = {r 1 = n,r 2,r 3,..., 。 。 对于j = 1,2,递归地由rj + 1 = zrj mod(d)递归地计算周期T = 2q1q2。 。 。 在减少残留类Z * d中,给出{v1 = r1 / d,v2 = r2 / d, 。 。 }输出。
    • 2. 发明授权
    • Method of generating random numbers
    • 产生随机数的方法
    • US08443021B2
    • 2013-05-14
    • US12379964
    • 2009-03-05
    • Hiroshi NakazawaNaoya Nakazawa
    • Hiroshi NakazawaNaoya Nakazawa
    • G06F1/02G06F7/58
    • G06F7/586
    • A method of obtaining uniform and independent random numbers is given (a) comprising two distinct odd primes p1, p2 that give mutually coprime integers q1=(p1−1)/2 and q2=(p2−1)/2 with different parity to form the modulus d=p1p2; (b) comprising primitive roots z1, z2 of primes p1, p2, respectively, giving congruence relations z≡zj mod(pj) for j=1, 2 that determine the multiplier z; and (c) comprising the initial value n coprime with d=p1p2. The method generates the coset sequence n ={r1=n, r2, r3, . . . } of period T=2q1q2 recursively by rj+1=zrj mod(d) for j=1, 2, . . . in the reduced residue class group Z*d, giving {v1=r1/d, v2=r2/d, . . . } for output.
    • 给出了一种获得均匀和独立随机数的方法(a),其包括两个不同奇数素数p1,p2,它们给出相互互补的整数q1 =(p1-1)/ 2和q2 =(p2-1)/ 2,具有不同的奇偶校验 形成模量d = p1p2; (b)分别包括素数p1,p2的原始根z1,z2,给出确定乘数z的j = 1,2的一致关系z = zj mod(pj) 和(c)包括具有d = p1p2的初始值n互质。 该方法产生陪集序列n z = {r 1 = n,r 2,r 3,..., 。 。 对于j = 1,2,递归地由rj + 1 = zrj mod(d)递归地计算周期T = 2q1q2。 。 。 在减少残留类Z * d中,给出{v1 = r1 / d,v2 = r2 / d, 。 。 }输出。
    • 4. 发明申请
    • METHOD OF GENERATING RANDOM NUMBERS II
    • 产生随机数的方法II
    • US20120290632A1
    • 2012-11-15
    • US13105351
    • 2011-05-11
    • Hiroshi NakazawaNaoya Nakazawa
    • Hiroshi NakazawaNaoya Nakazawa
    • G06F7/58
    • G06F7/586
    • A method of obtaining uniform and independent random numbers is given 1. by taking two distinct odd primes p1,p2 that give mutually coprime integers, an odd q1=(p1−1)/2 and an even q2=(p2−1)/2, to form the modulus d=p1p2, 2. by taking primitive roots z1,z2 of primes p1,p2, respectively, and giving congruence relations z≡−z1 mod (p1) and z≡z2 mod (p2) that determine the multiplier z uniquely modulo d, and 3. by taking an initial value n coprime with d=p1p2. The method generates the sequence of integers {rj|1≦j≦T=2q1q2} recursively by congruence relations r1≡n mod(d), rj+1≡zrj mod (d), 0
    • 给出一种获得均匀和独立的随机数的方法1.通过获得相互互质整数的两个不同的奇素数p1,p2,奇数q1 =(p1-1)/ 2和偶数q2 =(p2-1)/ 通过分别取出素数p1,p2的原始根z1,z2,并给出确定一致性的一致关系z≡-z1 mod(p1)和z≡z2mod(p2)以形成模数d = p1p2,2。 乘法器z唯一地模D,并且通过用d = p1p2取初始值n coprime。 该方法通过一致关系r1≡nmod(d),rj +1≡zrjmod(d),0