会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 3. 发明授权
    • Feedback control system using adaptive control
    • 反馈控制系统采用自适应控制
    • US5692485A
    • 1997-12-02
    • US401430
    • 1995-03-09
    • Hidetaka MakiYusuke HasegawaIsao KomoriyaYoichi Nishimura
    • Hidetaka MakiYusuke HasegawaIsao KomoriyaYoichi Nishimura
    • F02D45/00F02D41/04F02D41/14G05B13/02
    • F02D41/1473F02D41/047F02D41/1402G05B13/024F02D2041/1415F02D2041/1433
    • An air/fuel ratio feedback control system with the adaptive controller. The adaptive controller has a system parameter estimator which identifies system parameters such that the error between the desired value and the controlled variable outputted from the plant decreases to zero. In the system, a basic fuel injection amount is determined at a feedforward system. The adaptive controller is placed outside of the basic fuel injection amount determining system and receives the desired value (air/fuel ratio) and the controlled value (detected air/fuel ratio) using the system parameters etc. The calculated feedback coefficient is multiplied to the basic fuel injection amount to determine a final injection amount to be supplied to the plant (engine). Variables necessary for the system parameter calculation are limited their change of range so as to make the controller to be realized on a low performance computer with a small word length.
    • 具有自适应控制器的空燃比反馈控制系统。 自适应控制器具有系统参数估计器,其识别系统参数,使得期望值与从工厂输出的受控变量之间的误差降至零。 在该系统中,在前馈系统中确定基本的燃料喷射量。 自适应控制器设置在基本燃料喷射量确定系统的外部,并使用系统参数等接收期望值(空燃比)和受控值(检测到的空气/燃料比)。将计算出的反馈系数乘以 基本燃料喷射量以确定要供应给设备(发动机)的最终喷射量。 系统参数计算所需的变量限制了其范围的变化,以使控制器在具有较小字长的低性能计算机上实现。
    • 5. 发明授权
    • Fuel metering control system in internal combustion engine
    • 内燃机燃油计量控制系统
    • US5349933A
    • 1994-09-27
    • US137344
    • 1993-10-18
    • Yusuke HasegawaShusuke AkazakiIsao KomoriyaHidetaka MakiToshiaki Hirota
    • Yusuke HasegawaShusuke AkazakiIsao KomoriyaHidetaka MakiToshiaki Hirota
    • F02D41/04F02D41/14F02D41/18F02D41/10
    • F02D41/182F02D41/045F02D41/1401F02D2041/1431F02D2041/1433F02D2200/0402
    • A system for controlling fuel metering in an internal combustion engine using a fluid dynamic model and the cylinder air flow past the throttle is determined therefrom. Based on the observation that the difference between a steady-state engine operating condition and a transient engine operating condition can be described as the difference in the effective throttle opening areas, the amount of fuel injection is determined from the product of the ratio between the areas and a basic fuel injection amount under the steady-state engine operating condition obtained by mapped data retrieval and by subtracting a correction amount corresponding to an air flow filling a chamber between the throttle and the cylinder from the product. Under steady-state engine operation, the correction amount becomes zero. In an embodiment, the first-order lag of a detected throttle opening is calculated and based on the value, various parameters including a pseudo manifold pressure are obtained so as to solve sensors' detection timing lag or a pressure sensor's detection lag.
    • 使用流体动力学模型来控制内燃机中的燃料计量的系统和通过油门的气缸气流被确定。 基于将稳态发动机运转状态与瞬时发动机运转状态之间的差可以描述为有效节气门开度面积的差异的观察结果,燃料喷射量根据区域之间的比率 以及在通过映射数据检索获得的稳态发动机运行状态下的基本燃料喷射量,并且从产品中减去与填充节气门和气缸之间的室的空气流相对应的校正量。 在稳态发动机运行下,校正量变为零。 在一个实施例中,计算检测到的节气门开度的一阶滞后,并且基于该值,获得包括伪歧管压力的各种参数,以便解决传感器的检测定时滞后或压力传感器的检测滞后。
    • 10. 发明授权
    • Fuel metering control system in internal combustion engine
    • 内燃机燃油计量控制系统
    • US5549092A
    • 1996-08-27
    • US507974
    • 1995-07-27
    • Yusuke HasegawaIsao KomoriyaShusuke AkazakiHidetaka MakiSatoru Abe
    • Yusuke HasegawaIsao KomoriyaShusuke AkazakiHidetaka MakiSatoru Abe
    • F02D45/00F02D41/04F02D41/18F02D41/32F02D41/34F02D41/10
    • F02D41/182F02D41/045F02D41/32F02D2200/0402
    • A system for controlling fuel metering in an internal combustion engine using a fluid dynamic model and the quantity of throttle-past air is determined therefrom. Based on the observation that the difference between the steady-state engine operating condition and the transient engine operating condition can be described as the difference in the effective throttle opening areas, the quantity of fuel injection is determined from the product of the ratio between the area and its first-order lag value and the quantity of fuel injection under the steady-state engine operating condition obtained by mapped data retrieval, and by subtracting the quantity of correction corresponding to the quantity of chamber-filling air. The effective throttle opening area's first order lag is calculated using a weight that varies with the engine speed, so that elongation or shortening of the TDC interval due to the decrease/increase of the engine speed will not affect the determination of the quantity of fuel injection.
    • 使用流体动力学模型来控制内燃机中的燃料计量的系统以及节流过去空气的量来确定。 基于将稳态发动机运转状态与暂态发动机运转状态之间的差可以描述为有效节气门开度面积的差异的观察结果,燃料喷射量根据区域之间的比率 以及其一阶滞后值和通过映射数据检索获得的稳态发动机运转状态下的燃料喷射量,并且减去与填充空气量相对应的校正量。 使用随发动机转速变化的重量来计算有效节气门开度面积的一阶滞后,使得由于发动机转速的降低/增加引起的TDC间隔的伸长或缩短不会影响燃料喷射量的确定 。