会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Ring laser gyroscope scale factor error control apparatus and method
control apparatus and method
    • 环形激光陀螺仪比例因子误差控制装置及方法
    • US5442442A
    • 1995-08-15
    • US114481
    • 1987-10-28
    • Edward KanegsbergSteven C. GillespieJohn P. Rahn
    • Edward KanegsbergSteven C. GillespieJohn P. Rahn
    • G01C19/66G01B8/02H01S3/083
    • G01C19/66
    • The intensity and frequency variation due to retroscatter in a ring laser gyroscope are determined and used to correct the gyro scale factor. The orthogonal types of scatter due to dielectric variation and due to height variation, which lead to common mode phase delays of 0 and .pi./2 respectively are taken into account in calculating the correction to the scale factor. The scale factor errors are determined in terms of observable quantities. Scale factor error control is accomplished by extracting a portion of both of the two counterpropagating light beams and measuring their respective intensities, creating intensity modulation indices representative of the sum and difference intensities, using closed loop control of the real-time difference between the intensities of the beam in the ring laser gyro to reduce scale factor variation using push-pull mirror control of at least two mirrors. The residual error after push-pull mirror control minimization is output for use by a navigation system computer.
    • 确定环形激光陀螺仪中逆向散射的强度和频率变化,并用于校正陀螺仪比例因子。 在计算比例因子的校正时,考虑了由于电介质变化和由于高度变化导致的共模相位延迟0和pi / 2的正交分类的散射。 比例因子误差根据可观测量确定。 缩放因子误差控制是通过提取两个反向传播光束的一部分并测量它们各自的强度来实现的,使用闭环控制来产生表示和和强度的强度调制指数, 环形激光陀螺仪中的光束使用至少两个反射镜的推挽镜控制来减小比例因子变化。 输出推挽镜控制最小化后的残留误差,供导航系统计算机使用。
    • 2. 发明授权
    • Polymeric material with voids that compress to allow the polymeric material to absorb applied force and decrease reaction force to one or more sensor fibers
    • 具有空隙的聚合材料被压缩以允许聚合物材料吸收施加的力并且减小对一个或​​多个传感器纤维的反作用力
    • US06980709B2
    • 2005-12-27
    • US10600985
    • 2003-06-20
    • Kurt R. CarlsonKristin C. CooleyJohn P. RahnManfred Schiruska
    • Kurt R. CarlsonKristin C. CooleyJohn P. RahnManfred Schiruska
    • G01C19/72G02B6/04
    • G01C19/722
    • In one example, the voids 208 comprise one or more gas (e.g., air) bubbles in the solid material 206. In another example, the voids 208 comprise a structure that preserves a space in the solid material 206. In a further example, the voids 208 comprise hollow elastomeric bubbles, for example, hollow elastomeric microspheres. The hollow elastomeric microspheres comprise microballoons with tin walls that encapsulate a gas to allow for easy compression. For example, the walls of the hollow elastomeric microspheres are strong enough to avoid breakage under pressure, but thin enough to easily compress. In a further example, once cured in the solid material 206, the hollow elastomeric microspheres comprise substantially similar compressibility characteristics as gas bubbles. The voids 208 in one example are added to a resin of the solid material 206 in a substantially uniform distribution. For example, the hollow elastomeric microspheres are stirred into the resin of the solid material 206.
    • 在一个示例中,空隙208包括固体材料206中的一个或多个气体(例如空气)气泡。 在另一示例中,空隙208包括保持固体材料206中的空间的结构。 在另一个实例中,空隙208包括中空弹性体气泡,例如中空弹性微球。 中空弹性体微球包括具有锡壁的微球,其包封气体以允许容易的压缩。 例如,中空弹性体微球的壁足够强以避免在压力下破裂,但足够薄以容易压缩。 在另一个实例中,一旦在固体材料206中固化,中空弹性体微球体包含与气泡基本相似的压缩特性。 一个实例中的空隙208以基本上均匀的分布添加到固体材料206的树脂中。 例如,将中空弹性体微球体搅拌到固体材料206的树脂中。
    • 3. 发明授权
    • Method and apparatus for determining the pressure-induced nonreciprocity
of a fiber-optic coil
    • 用于确定光纤线圈的压力不可逆性的方法和装置
    • US5856867A
    • 1999-01-05
    • US901504
    • 1997-07-28
    • John P. RahnRalph A. Patterson
    • John P. RahnRalph A. Patterson
    • G01C19/72G01C25/00G01M11/02G01M11/08G01N21/00
    • G01M11/088G01C19/721G01C25/005
    • The invention is a method and apparatus for quantitatively characterizing the pressure-induced nonreciprocity of a fiber-optic coil where the pressure-induced nonreciprocity is a property of a fiber-optic coil which pertains to the degree to which light beams, initially in phase, differ in phase as a result of traversing the fiber-optic coil in reverse directions while the fiber-optic coil is being subjected to a time-varying pressure. The method comprises the steps of applying time-varying pressure to the fiber-optic coil for a predetermined time period, measuring the phase difference of light beams traversing the fiber-optic coil in reverse directions during the predetermined time period, and obtaining a measure of the nonreciprocity of the fiber-optic coil utilizing the measured phase difference. If the time-varying pressure is specified by a first function of time, the measure of the nonreciprocity is the integral over the predetermined time period of the product of a second function of time and either (1) the phase difference of light beams traversing the fiber-optic coil in reverse directions during the predetermined time period or (2) the integral over time of the phase difference. The second function is chosen such that the measure of the nonrecipocity has a signal-to-noise ratio of at least one. Preferably, the second function is (1) an approximation of the time derivative of the first function if the product involves the phase difference or (2) an approximation of the first function if the product involves the integral of the phase difference. The invention also includes the apparatus for practicing the method.
    • 本发明是用于定量表征光纤线圈的压力引起的不可逆性的方法和装置,其中压力引起的不可逆性是光纤线圈的属性,其属于最初同相的光束的程度, 由于在光纤线圈受到时变压力的同时沿相反方向穿过光纤线圈而导致相位不同。 该方法包括以下步骤:在预定时间段内对光纤线圈施加时变压力,在预定时间段内测量沿相反方向穿过光纤线圈的光束的相位差,并且获得 光纤线圈利用测量的相位差的不可逆性。 如果通过时间的第一函数指定时变压力,则不可逆性的度量是在时间的第二函数的乘积的预定时间段内的积分,并且(1)穿过所述时间的光束的相位差 光纤线圈在预定时间段内相反,或(2)相位差随时间的积分。 选择第二功能使得非相对性的测量具有至少一个的信噪比。 优选地,第二函数是(1)如果乘积涉及相位差,则第一函数的时间导数的近似,或者(2)如果乘积涉及相位差的积分,则第一函数的近似。 本发明还包括用于实施该方法的装置。
    • 4. 发明授权
    • System and method of stabilizing the scale factor shift in fiber optic
gyroscopes using a spectral monitor array
    • 使用光谱监视器阵列稳定光纤陀螺仪的比例因子偏移的系统和方法
    • US6108086A
    • 2000-08-22
    • US262795
    • 1999-03-04
    • Ronald J. MichalDavid M. RozelleJohn P. Rahn
    • Ronald J. MichalDavid M. RozelleJohn P. Rahn
    • G01C19/72
    • G01C19/72
    • A system and method for providing scale factor stabilization of a broadband light source used in fiber optic gyroscopes is provided. A primary bandpass filter is positioned in the propagation path of the light emitted by the broadband light source to narrow the spectral width of the optical signal transmitted to the fiber optic gyroscope, which reduces the centroid wavelength shift resulting when the broadband light source is exposed to ionizing radiation and other harsh environmental conditions. The filtered optical signal is then passed through the fiber optic gyroscope, where the filter optical signal is processed to measure the amount of rotation of the fiber optic gyroscope. The scale factor stabilization system further includes the spectral monitor array arranged to perform direct optical wavelength measurements of the filtered optical signal to determine whether a scale factor shift in the optical signal has occurred. When a scale factor shift is detected, the detected scale factor shift is used in a compensation algorithm to correct the scale factor of the optical signal. By monitoring the scale factor shift and adjusting the values measured by the fiber optic gyroscope in accordance with the detected scale factor shift, the accuracy of the fiber optic gyro can be improved to a fraction of a part-per-million.
    • 提供了一种用于提供光纤陀螺仪中使用的宽带光源的比例因子稳定的系统和方法。 主要带通滤波器位于由宽带光源发射的光的传播路径中,以窄化传输到光纤陀螺仪的光信号的光谱宽度,这降低了当宽带光源暴露于 电离辐射等恶劣环境条件。 滤波后的光信号然后通过光纤陀螺仪,其中处理滤波器光信号以测量光纤陀螺仪的旋转量。 比例因子稳定系统还包括频谱监视器阵列,其布置成对所滤波的光信号执行直接光波长测量,以确定是否发生了光信号中的比例因子偏移。 当检测到比例因子偏移时,在补偿算法中使用检测到的比例因子偏移来校正光信号的比例因子。 通过监测比例因子偏移并根据检测到的比例因子偏移调整由光纤陀螺仪测量的值,光纤陀螺仪的精度可以提高到百万分之几。
    • 7. 发明授权
    • Stray light eliminator in a scatterometer
    • 在散射仪中散射消光器
    • US4269518A
    • 1981-05-26
    • US49693
    • 1979-06-18
    • John P. Rahn
    • John P. Rahn
    • G01N21/47H01S3/083G01N21/01G02B27/14
    • H01S3/083G01N21/474
    • Stray scattering in a scatterometer is removed by use of a lens and aperture system in conjunction with a beamsplitter. Backscattered light from a mirror being tested is deflected by a beamsplitter and focused by a lens through an aperture onto a detector. The distance from the beamsplitter to the lens is much smaller than the distance from the mirror to the beamsplitter in order to increase the detected signal as compared with detected noise caused by light scattered by the beamsplitter. The scatterometer system disclosed is further refined by use of a cavity dumper which absorbs stray light left after reflection from the mirror being tested. The cavity dumper is a silicon semiconductor on a metal backing which absorbs the light with minimum reflection back along the original incident light path.
    • 通过使用与分束器结合的透镜和光圈系统来去除散射仪中的散射散射。 来自被测镜的反向散射光被分束器偏转,并被透镜通过孔聚焦到检测器上。 与从分光镜散射的光所引起的检测到的噪声相比,从分束器到透镜的距离远小于从反射镜到分束器的距离。 所公开的散射仪系统通过使用吸收从被测试镜反射后剩余的杂散光的空腔翻转器进一步改进。 空腔自卸车是金属背衬上的硅半导体,其沿​​着原始入射光路以最小的反射吸收光。
    • 10. 发明授权
    • Total optical loss measurement device
    • 全光损耗测量装置
    • US4624573A
    • 1986-11-25
    • US609942
    • 1984-05-14
    • John P. RahnC. Denton Marrs
    • John P. RahnC. Denton Marrs
    • G01N21/55
    • G01N21/55
    • The total optical loss caused by laser induced damage to an optical component is measured by monitoring the phase shift during mirror reflectance or transmission. The phase shift is directly proportional to the amount of loss. A secondary laser illuminates the area under test with a coherent light beam well below the component's damage threshold. This reference beam is modulated. The reflected or transmitted reference beam is monitored by a photomultiplier tube whose output is fed to a lock-in circuit. The lock-in circuit compares the phase of the received light to the induced modulation.
    • 通过在镜面反射或透射期间监测相移来测量激光对光学部件的损伤引起的总光损耗。 相移与损耗量成正比。 次级激光器使用远低于组件损伤阈值的相干光束照亮被测区域。 该参考光束被调制。 反射或透射的参考光束由输出被馈送到锁定电路的光电倍增管监视。 锁定电路将接收到的光的相位与感应调制进行比较。