会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 2. 发明申请
    • PRESSURE REGULATION IN A TRANSCRITICAL REFRIGERANT CYCLE
    • 过渡制冷剂循环中的压力调节
    • WO2005088213A1
    • 2005-09-22
    • PCT/US2005/007175
    • 2005-03-02
    • CARRIER CORPORATION
    • CONCHA, JulioSIENEL, Tobias, H.EISENHOWER, Bryan, A.CHEN, Yu
    • F25B41/04
    • F25B9/008F25B41/062F25B2309/061F25B2339/047F25B2600/17F25B2600/2513F25B2700/1931F25B2700/2106F25B2700/21161
    • A refrigerant cycle is provided with a control for an expansion device to achieve a desired compressor discharge pressure. The system operates transcritically, such that greater freedom over compressor discharge pressure is provided. The system's efficiency is optimized by selecting an optimum discharge pressure. The optimum discharge pressure is selected based upon sensed environmental conditions, and the expansion device is adjusted to achieve the desired compressor discharge pressure. A feedback loop may be provided to sense the actual compressor discharge pressure and adjust the actual compressor discharge pressure by further refining the expansion device. The system is disclosed providing heated water based upon a demand for a particular hot water temperature. Further, the optimum discharge pressures may be determined experimentally, with an offset added to the experimentally determined value to ensure that the actual pressure is higher than the desired, or optimum pressure for the particular refrigerant cycle. In one embodiment, a formula is utilized to determine the optimum discharge pressure.
    • 制冷循环具有用于膨胀装置的控制以实现期望的压缩机排出压力。 该系统跨运行,从而提供比压缩机排放压力更大的自由度。 通过选择最佳排放压力来优化系统的效率。 基于感测到的环境条件选择最佳排出压力,并且调节膨胀装置以实现期望的压缩机排出压力。 可以提供反馈回路以感测实际的压缩机排放压力,并通过进一步细化膨胀装置来调节实际的压缩机排放压力。 公开了该系统基于对特定热水温度的需求来提供加热的水。 此外,可以通过实验确定最佳排出压力,并将偏移量加到实验确定值上,以确保实际压力高于特定制冷剂循环的期望压力或最佳压力。 在一个实施例中,使用公式来确定最佳排出压力。
    • 6. 发明申请
    • DEFROST MODE FOR HVAC HEAT PUMP SYSTEMS
    • HVAC热泵系统的DEFROST模式
    • WO2005077015A2
    • 2005-08-25
    • PCT/US2005/003902
    • 2005-02-07
    • CARRIER CORPORATION
    • CONCHA, JulioCHEN, YuPARK, Young, KyuSIENEL, Tobias, H.
    • F25B30/02F25B39/04F25B47/02F25D21/00
    • F25B30/02F25B47/022F25B2339/047F25B2400/0403F25B2500/18F25B2500/19F25B2700/133F25B2700/2106F25B2700/21151
    • A heat pump, and in particular a heat pump for heating a hot water supply is provided with an improved defrost mode. The defrost mode is actuated to remove frost from an outdoor evaporator that may accumulate during cold weather operation. An algorithm for operation of the defrost mode is developed experimentally by seeking to maximize the heat transfer provided by the refrigerant. A heating system condition is experimentally related to the heat transfer capacity. One then maximizes the average heat transfer capacity to determine the optimum initiation point for the defrost mode. Further, protections are included into the defrost mode. When the heat pump is utilized to heat hot water, methods are provided to prevent the water that remains in the heat exchanger from becoming unduly heated. In one method, the water pump may be periodically operated to move the water. In a second method, a control ensures the discharge pressure of the refrigerant leaving the compressor is reduced, and that the water pump is not stopped until that reduced temperature falls below a predetermined maximum. The temperature reduction is achieved through a dual control loop wherein a temperature that is too high results in a new desired discharge pressure. The control achieves the new desired pressure by controlling the expansion device. In another protection feature, as a control determines that the defrost mode is nearing its end, an evaporator fan is run to remove melted water from the evaporator coils, and also to ensure the refrigerant leaving the evaporator does not reach unduly high pressure or temperatures.
    • 具有改进的除霜模式的热泵,特别是用于加热热水源的热泵。 启动除霜模式以从室外蒸发器中除霜,这可能会在寒冷天气下运行时积聚。 通过试图使制冷剂提供的热传递最大化,实验地开发了除霜模式的操作算法。 加热系统条件实验上与传热能力有关。 然后将平均热传递能力最大化,以确定除霜模式的最佳起始点。 此外,保护被包括在除霜模式中。 当使用热泵来加热热水时,提供了防止热交换器中残留的水变得过度加热的方法。 在一种方法中,水泵可以周期性地操作以移动水。 在第二种方法中,控制器确保离开压缩机的制冷剂的排放压力降低,并且水泵不停止,直到降低的温度降到预定的最大值以下。 通过双重控制回路实现温度降低,其中太高的温度导致新的期望排出压力。 该控制通过控制膨胀装置实现新的期望压力。 在另一个保护特征中,当控制器确定除霜模式接近其结束时,运行蒸发器风扇以从蒸发器盘管中除去熔融的水,并且还确保离开蒸发器的制冷剂不会达到过高的压力或温度。
    • 10. 发明申请
    • REFRIGERATION SYSTEM HAVING VARIABLE SPEED FAN
    • 具有变速风扇的制冷系统
    • WO2005003650A1
    • 2005-01-13
    • PCT/US2004/019444
    • 2004-06-17
    • CARRIER CORPORATION
    • GOPALNARAYANAN, SivakumarCHEN, YuSIENEL, TobiasZHANG, Lili
    • F25B9/00
    • F25B9/008F25B2309/061F25B2339/047F25B2500/31F25B2600/112F25B2600/17F25B2700/2106Y02B30/743
    • A transcritical refrigeration system includes a compressor (22), a gas cooler (24), an expansion device (26), and an evaporator (28). Refrigerant is circulated though the closed circuit system. Preferably, carbon dioxide is used as the refrigerant. A fan (54) moves outdoor air that exchanges heat with the refrigerant across the evaporator (28). The speed of the fan (54) is regulated to regulate the evaporator pressure and to adapt the evaporator (28) to different environmental conditions to achieve the optimal coefficient of performance. During high ambient conditions, the fan speed is decreased, decreasing the refrigerant mass flowrate in the system. The energy exchange per unit mass of the refrigerant in the gas cooler (24) increases and the work of the fan (54) decreases, increasing the coefficient of performance of the system. During low ambient conditions, the mass flowrate of the system is low and there is more heat transfer thermal resistance on the refrigerant side at the evaporator (28). The speed of the fan (54) is lowered to decrease the work of the fan (54). Therefore, the coefficient of performance increases.
    • 跨临界制冷系统包括压缩机(22),气体冷却器(24),膨胀装置(26)和蒸发器(28)。 制冷剂通过闭路系统循环。 优选使用二氧化碳作为制冷剂。 风扇(54)移动与制冷剂交换热量的室外空气穿过蒸发器(28)。 调节风扇(54)的速度以调节蒸发器压力并使蒸发器(28)适应不同的环境条件以实现最佳性能系数。 在高环境条件下,风扇转速降低,制冷剂质量流量降低。 气体冷却器(24)中每单位质量的制冷剂的能量交换增加,并且风扇(54)的作用减小,从而提高了系统的性能系数。 在低环境条件下,系统的质量流量低,并且在蒸发器(28)处的制冷剂侧具有更多的传热热阻。 风扇(54)的速度降低,以减小风扇(54)的工作。 因此,性能系数提高。