会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 4. 发明授权
    • Satellite camera image navigation
    • 卫星摄像机图像导航
    • US4688092A
    • 1987-08-18
    • US860142
    • 1986-05-06
    • Ahmed A. KamelDonald W. GraulJohn SavidesCharles W. Hanson
    • Ahmed A. KamelDonald W. GraulJohn SavidesCharles W. Hanson
    • B64G1/36G01C11/02G01C21/24G01S3/78G09B9/52G01C21/00
    • G01C11/02G09B9/52
    • Pixels within a satellite camera (1, 2) image are precisely located in terms of latitude and longitude on a celestial body, such as the earth, being imaged. A computer (60) on the earth generates models (40, 50) of the satellite's orbit and attitude, respectively. The orbit model (40) is generated from measurements of stars and landmarks taken by the camera (1, 2), and by range data. The orbit model (40) is an expression of the satellite's latitude and longitude at the subsatellite point, and of the altitude of the satellite, as a function of time, using as coefficients (K) the six Keplerian elements at epoch. The attitude model (50) is based upon star measurements taken by each camera (1, 2). The attitude model (50) is a set of expressions for the deviations in a set of mutually orthogonal reference optical axes (x, y, z) as a function of time, for each camera (1, 2). Measured data is fit into the models (40, 50) using a walking least squares fit algorithm. A transformation computer (66 ) transforms pixel coordinates as telemetered by the camera (1, 2) into earth latitude and longitude coordinates, using the orbit and attitude models (40, 50).
    • 卫星摄像机(1,2)图像中的像素精确地位于天体(例如地球)上的纬度和经度上。 地球上的计算机(60)分别产生卫星轨道和姿态的模型(40,50)。 轨道模型(40)由相机(1,2)拍摄的星星和地标的测量以及距离数据生成。 轨道模型(40)是卫星在经纬度纬度和纬度以及卫星海拔高度的表达式,作为时间的函数,使用时代中的六个开普勒元素的系数(K)。 姿态模型(50)基于每个摄像机拍摄的星形测量(1,2)。 姿态模型(50)是对于每个照相机(1,2),作为时间的函数的一组相互正交的参考光轴(x,y,z)中的偏差的一组表达式。 使用行走最小二乘拟合算法将测量数据拟合到模型(40,50)中。 变换计算机(66)使用轨道和姿态模型(40,50)将由照相机(1,2)遥测的像素坐标变换为地球纬度和经度坐标。
    • 5. 发明授权
    • Spacecraft camera image registration
    • 航天器相机图像注册
    • US4688091A
    • 1987-08-18
    • US860373
    • 1986-05-06
    • Ahmed A. KamelDonald W. GraulFred N. T. ChanDonald W. Gamble
    • Ahmed A. KamelDonald W. GraulFred N. T. ChanDonald W. Gamble
    • B64G1/66B64G1/22G01C21/20G01C21/24G01J1/42G03B15/00G03B17/00H04N5/232H04N7/01
    • G01C21/20H04N5/232
    • A system for achieving spacecraft camera (1, 2) image registration comprises a portion external to the spacecraft and an image motion compensation system (IMCS) portion onboard the spacecraft. Within the IMCS, a computer (38) calculates an image registration compensation signal (60) which is sent to the scan control loops (84, 88, 94, 98) of the onboard cameras (1, 2). At the location external to the spacecraft, the long-term orbital and attitude perturbations on the spacecraft are modeled. Coefficients (K, A) from this model are periodically sent to the onboard computer (38) by means of a command unit (39). The coefficients (K, A) take into account observations of stars and landmarks made by the spacecraft cameras (1, 2) themselves. The computer (38) takes as inputs the updated coefficients (K, A) plus synchronization information indicating the mirror position (AZ, EL) of each of the spacecraft cameras (1, 2), operating mode, and starting and stopping status of the scan lines generated by these cameras (1, 2), and generates in response thereto the image registration compensation signal (60). The sources of periodic thermal errors on the spacecraft are discussed. The system is checked by calculating "measurement residuals", the difference between the landmark and star locations predicted at the external location and the landmark and star locations as measured by the spacecraft cameras (1, 2).
    • 用于实现航天器相机(1,2)图像配准的系统包括航天器外部的部分和飞船上的图像运动补偿系统(IMCS)部分。 在IMCS内,计算机(38)计算发送到车载摄像机(1,2)的扫描控制回路(84,88,94,98)的图像配准补偿信号(60)。 在航天器外部的位置,对航天器的长期轨道和姿态扰动进行了建模。 来自该模型的系数(K,A)通过命令单元(39)周期性地发送到车载计算机(38)。 系数(K,A)考虑到由航天器相机(1,2)自身制成的星星和地标的观测。 计算机(38)将更新的系数(K,A)加上指示每个航天器相机(1,2)的镜像位置(AZ,EL)的同步信息,操作模式和起始和停止状态作为输入 由这些摄像机(1,2)生成的扫描线,并且响应于此生成图像配准补偿信号(60)。 讨论了航天器周期性热误差的来源。 通过计算“测量残差”来检查系统,由外部位置预测的地标和星形位置之间的差异以及由航天器相机(1,2)测量的地标和星形位置。
    • 7. 发明授权
    • Star sightings by satellite for image navigation
    • 通过卫星进行星形瞄准用于图像导航
    • US4746976A
    • 1988-05-24
    • US867356
    • 1986-05-23
    • Ahmed A. KamelDonald E. EkmanJohn SavidesGerald J. Zwirn
    • Ahmed A. KamelDonald E. EkmanJohn SavidesGerald J. Zwirn
    • B64G1/36G01C21/02G01C21/24G06T1/00G09B9/52H04N7/18
    • G01C21/025G09B9/52
    • Stars are sensed by one or more instruments (1, 2) on board a three-axis stabilized satellite, for purposes of assisting in image navigation. A star acquistion computer (64), which may be located on the earth, commands the instrument mirror (33, 32) to slew just outside the limb of the earth or other celestial body around which the satellite is orbiting, to look for stars that have been cataloged in a star map stored within the computer (64). The instrument (1, 2) is commanded to dwell for a period of time equal to a star search window time, plus the maximum time the instrument (1, 2) takes to complete a current scan, plus the maximum time it takes for the mirror (33, 32) to slew to the star. When the satellite is first placed in orbit, and following first stationkeeping and eclipse, a special operation is performed in which the star-seeking instrument (1, 2) FOV is broadened. The elevation dimension can be broadened by performing repetitive star seeks; the azimuth dimension can be broadened by lengthening the commanded dwell times.
    • 星星由一个或多个仪器(1,2)感测在三轴稳定的卫星上,目的是协助图像导航。 可以位于地球上的星形采集计算机(64)命令仪器镜(33,32)正好在卫星绕轨道的地球或其他天体的肢体外面去寻找恒星 已经在存储在计算机内的星图中编目了(64)。 命令仪器(1,2)驻留一段时间等于星形搜索窗口时间,加上仪器(1,2)完成当前扫描所需的最长时间,加上最长时间 镜子(33,32)转向星星。 当卫星首次放置在轨道上,并且在第一次保存和日食之后,执行寻星仪器(1,2)FOV的特殊操作。 通过执行重复的星际搜索可以扩大海拔尺寸; 通过延长指令停留时间可以扩大方位角尺寸。