会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 6. 发明申请
    • WAVELET BASED DATA COMPRESSION
    • 基于WAVELET的数据压缩
    • WO1997032281A1
    • 1997-09-04
    • PCT/US1997003300
    • 1997-02-27
    • INTERVAL RESEARCH CORPORATIONKOLAROV, Krasimir, D.LYNCH, William, C.SCHRÖDER, PeterSWELDENS, Wim
    • INTERVAL RESEARCH CORPORATION
    • G06T09/00
    • H04N19/647G06T9/40
    • A technique for compression and expansion of a function defined upon an M-dimensional manifold embedded in N-dimensional space uses a second generation wavelet transform and a modified zerotree bit-encoding scheme. Typically, a function is defined upon a two-dimensional manifold embedded in three-dimensional space, such as a sphere. A geometric base is chosen as a coarse initial model of the manifold. Second generation wavelets for the function are calculated using a triangular subdivision scheme in order to subdivide the geometric base in order to produce a refined triangular mesh. The wavelet coefficients are defined at the vertices of the triangles in the triangular mesh. A tree structure is created in which each node of the tree structure represents an associated triangle of the triangular mesh. Each triangle in the mesh is recursively subdivided into four subtriangles and each associated node in the tree structure also has four childen, which correspond to the four subtriangles. Each wavelet coefficient defined at a particular vertex in triangular mesh is uniquely assigned to a single one of the triangles at a next higher level of subdivision, such that each triangle at the next higher level of subdivision has from zero to three assigned wavelet coefficients. Using a modified zerotree encoding scheme, values of the wavelet coefficients are processed bit plane by bit plane, outputting bits indicative of significant nodes and their descendants. Sign bits and data bits are also output. An expansion technique inputs bits according to the modified zerotree scheme into the tree structure in order to define wavelet coefficients. An inverse second generation wavelet transform is used to synthetize the original function from the wavelet coefficients.
    • 用于压缩和扩展在嵌入在N维空间中的M维多维分组中定义的函数的技术使用第二代小波变换和修改的零树比特编码方案。 通常,在嵌入在三维空间中的二维歧管(例如球体)上定义功能。 选择几何基础作为歧管的粗略初始模型。 使用三角形细分方案计算功能的第二代小波,以便细分几何基,以产生精细的三角形网格。 小波系数定义在三角形网格中三角形的顶点。 创建树结构,其中树结构的每个节点表示三角形网格的相关三角形。 网格中的每个三角形被递归地细分为四个子三角形,并且树结构中的每个相关联的节点也具有四个子节点,其对应于四个子三角形。 在三角形网格中的特定顶点处定义的每个小波系数被唯一地分配给下一个更高级别的细分中的单个三角形,使得在下一个更高级别的细分处的每个三角形具有从零到三个分配的小波系数。 使用修改的零树编码方案,小波系数的值按位平面逐位处理,输出指示重要节点及其后代的比特。 同时输出符号位和数据位。 扩展技术根据修改的零树方案将比特输入到树结构中,以便定义小波系数。 反向第二代小波变换用于从小波系数合成原始函数。