会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 2. 发明授权
    • Method of micromachining a multi-part cavity
    • 微加工多部分腔体的方法
    • US06827869B2
    • 2004-12-07
    • US10194167
    • 2002-07-11
    • Dragan PodlesnikThorsten LillJeff ChinnShaoher X. PanAnisul KhanMaocheng LiYiqiong Wang
    • Dragan PodlesnikThorsten LillJeff ChinnShaoher X. PanAnisul KhanMaocheng LiYiqiong Wang
    • H01L21302
    • H01L27/1087B81B2201/052B81B2203/0315B81B2203/033B81C1/00119B81C2201/016H01L21/3065H01L21/3086
    • The present disclosure pertains to our discovery of a particularly efficient method for etching a multi-part cavity in a substrate. The method provides for first etching a shaped opening, depositing a protective layer over at least a portion of the inner surface of the shaped opening, and then etching a shaped cavity directly beneath and in continuous communication with the shaped opening. The protective layer protects the etch profile of the shaped opening during etching of the shaped cavity, so that the shaped opening and the shaped cavity can be etched to have different shapes, if desired. In particular embodiments of the method of the invention, lateral etch barrier layers and/or implanted etch stops are also used to direct the etching process. The method of the invention can be applied to any application where it is necessary or desirable to provide a shaped opening and an underlying shaped cavity having varying shapes. The method is also useful whenever it is necessary to maintain tight control over the dimensions of the shaped opening.
    • 本公开涉及我们发现用于蚀刻衬底中的多部分空腔的特别有效的方法。 该方法提供了首先蚀刻成形开口,在成形开口的内表面的至少一部分上沉积保护层,然后直接在成形开口下面蚀刻成形腔,并与成形开口连续连通。 保护层在蚀刻成形腔体期间保护成形开口的蚀刻轮廓,从而如果需要,成形开口和成形腔体可以被蚀刻以具有不同的形状。 在本发明方法的特定实施例中,横向蚀刻阻挡层和/或注入的蚀刻停止点也用于引导蚀刻工艺。 本发明的方法可以应用于需要或期望提供具有不同形状的成形开口和下面的成形腔的任何应用。 只要需要对成形开口的尺寸进行严格控制,该方法也是有用的。
    • 3. 发明授权
    • Method for in situ removal of a dielectric antireflective coating during a gate etch process
    • 在栅极蚀刻工艺期间原位去除介电抗反射涂层的方法
    • US06613682B1
    • 2003-09-02
    • US09422816
    • 1999-10-21
    • Mohit JainThorsten LillJeff Chinn
    • Mohit JainThorsten LillJeff Chinn
    • H01L21302
    • H01L21/0276H01L21/28123H01L21/31116H01L21/32136H01L21/32137H01L21/32139
    • The present invention provides a method for the simultaneous removal of an oxygen and/or nitrogen-containing dielectric antireflective coating (“DARC”) during plasma etching of an underlying layer in a film stack. According to the method of the invention, the film stack is etched using a plasma containing reactive fluorine species. The concentration of reactive fluorine species within the plasma is controlled based on one or more of the following factors: the oxygen content of the antireflective coating, the nitrogen content of the antireflective coating, the thickness of the antireflection coating layer, and the thickness of the underlying film stack layer. The disclosure of the invention provides preferred combinations of plasma source gases which provide for the simultaneous removal of an oxygen and/or nitrogen-containing DARC layer during etching of an underlying etch stack layer, where the underlying stack layer comprises a metal silicide, polysilicon, or a metal. Also provided herein is a formula for determining the total amount of DARC removed using a given etch process recipe, based on the etch selectivity of the particular process recipe
    • 本发明提供了一种用于在膜堆叠中的下层的等离子体蚀刻期间同时去除氧和/或含氮介电抗反射涂层(“DARC”)的方法。 根据本发明的方法,使用含有反应性氟物质的等离子体来蚀刻膜堆叠。 基于以下一个或多个因素来控制等离子体中的活性氟物质的浓度:抗反射涂层的氧含量,抗反射涂层的氮含量,抗反射涂层的厚度和抗反射涂层的厚度 底层薄膜堆叠层。 本发明的公开内容提供了等离子体源气体的优选组合,其提供了在蚀刻下面的蚀刻堆叠层期间同时去除氧和/或含氮DARC层,其中下面的堆叠层包括金属硅化物,多晶硅, 或金属。 本文还提供了基于特定工艺配方的蚀刻选择性来确定使用给定蚀刻工艺配方去除的DARC的总量的公式
    • 4. 发明授权
    • Method for etching a trench having rounded top and bottom corners in a silicon substrate
    • 蚀刻在硅衬底中具有圆形顶角和底角的沟槽的方法
    • US06235643B1
    • 2001-05-22
    • US09371966
    • 1999-08-10
    • David MuiDragan PodlesnikWei LiuGene LeeNam-Hun KimJeff Chinn
    • David MuiDragan PodlesnikWei LiuGene LeeNam-Hun KimJeff Chinn
    • H01L2100
    • H01L21/76232H01L21/3065H01L21/3081
    • The present invention provides straight forward methods for plasma etching a trench having rounded top corners, or rounded bottom corners, or both in a silicon substrate. A first method for creating a rounded top corner on the etched silicon trench comprises etching both an overlying silicon oxide layer and an upper portion of the silicon substrate during a “break-through” step which immediately precedes the step in which the silicon trench is etched. The plasma feed gas for the break-through step comprises carbon and fluorine. In this method, the photoresist layer used to pattern the etch stack is preferably not removed prior to the break-through etching step. Subsequent to the break-through step, a trench is etched to a desired depth in the silicon substrate using a different plasma feed gas composition. A second method for creating a rounded top corner on the etched silicon trench comprises formation of a built-up extension on the sidewall of an overlying patterned silicon nitride hard mask during etch (break-through) of a silicon oxide adhesion layer which lies between the hard mask and a silicone substrate. The built-up extension upon the silicon nitride sidewall acts as a sacrificial masking material during etch of the silicon trench, delaying etching of the silicon at the outer edges of the top of the trench. This permits completion of trench etching with delayed etching of the top corner of the trench and provides a more gentle rounding (increased radius) at the top corners of the trench. During the etching of the silicon trench to its final dimensions, it is desirable to round the bottom corners of the finished silicon trench. We have discovered that a more rounded bottom trench corner is obtained using a two-step silicon etch process where the second step of the process is carried out at a higher process chamber pressure than the first step.
    • 本发明提供了用于在硅衬底中等离子体蚀刻具有圆形顶角或圆形底角或两者的沟槽的直接方法。 用于在蚀刻的硅沟槽上形成圆角顶角的第一种方法包括:在“穿透”步骤​​期间蚀刻覆盖硅氧化物层和硅衬底的上部两者之间,其中硅裂纹之前的步骤 。 用于穿透步骤的等离子体进料气体包括碳和氟。 在该方法中,用于图案化蚀刻叠层的光致抗蚀剂层优选在穿透蚀刻步骤之前不被去除。 在突破步骤之后,使用不同的等离子体进料气体组合物将沟槽蚀刻到硅衬底中的所需深度。 用于在蚀刻的硅沟槽上产生圆角顶角的第二种方法包括在位于第二层之间的氧化硅粘合层的蚀刻(穿透)期间在覆盖的图案化氮化硅硬掩模的侧壁上形成积层延伸。 硬面罩和硅胶基材。 在硅氮化物侧壁上的累积延伸在硅沟槽的蚀刻期间用作牺牲掩模材料,延迟在沟槽顶部的外边缘处的硅的蚀刻。 这允许通过延迟蚀刻沟槽的顶角完成沟槽蚀刻,并且在沟槽的顶角提供更温和的圆化(增加的半径)。 在将硅沟槽蚀刻到其最终尺寸期间,期望圆形完成的硅沟槽的底角。 我们已经发现,使用两步硅蚀刻工艺获得更圆的底部沟槽角,其中该工艺的第二步骤在比第一步高的处理室压力下进行。
    • 6. 发明授权
    • Method for etching polysilicon to have a smooth surface
    • 蚀刻多晶硅以使光滑表面的方法
    • US06402974B1
    • 2002-06-11
    • US09361683
    • 1999-07-27
    • Jitske TrevorShashank DeshmukhJeff Chinn
    • Jitske TrevorShashank DeshmukhJeff Chinn
    • C23F700
    • H01L21/32137H01L27/10861
    • In accordance with the present invention, during a polysilicon etch back, a controlled amount of oxygen (O2) is added to the plasma generation feed gases, to reduce pitting of the etched back polysilicon surface. The plasma etchant is generated from a plasma source gas comprising: (i) at least one fluorine-containing gas, and (ii) oxygen. The invention may be practiced in any of a number of apparatus adapted to expose polysilicon to a plasma etchant. One preferred apparatus is a decoupled plasma source (DPS™, Applied Materials, Santa Clara, Calif.) etching system. Another preferred apparatus is a magnetically enhanced plasma (MXP™, Applied Materials, Santa Clara, Calif.) etching system. Preferably, the invention is practiced in an apparatus having a memory that stores instructions for carrying out the process of the invention, a processor adapted to communicate with the memory and to execute the instructions stored by the memory, an etch chamber adapted to expose the substrate to the etchant in accordance with instructions from the processor, and a port adapted to pass communications between the processor and the etch chamber.
    • 根据本发明,在多晶硅回蚀期间,将等量的氧(O 2)加到等离子体产生的原料气中,以减少蚀刻后的多晶硅表面的点蚀。 等离子体蚀刻剂由等离子体源气体产生,其包括:(i)至少一种含氟气体和(ii)氧气。 本发明可以在适于将多晶硅暴露于等离子体蚀刻剂的许多设备中的任何一种中实施。 一种优选的装置是去耦等离子体源(DPS TM,Applied Materials,Santa Clara,Calif。)蚀刻系统。 另一个优选的装置是磁增强等离子体(MXP TM,Applied Materials,Santa Clara,Calif。)蚀刻系统。 优选地,本发明在具有存储器的设备中实现,该存储器存储用于执行本发明的处理的指令,适于与存储器通信并执行由存储器存储的指令的处理器,适于暴露衬底的蚀刻室 根据来自处理器的指令到蚀刻剂,以及适于传递处理器和蚀刻室之间的通信的端口。
    • 7. 发明授权
    • Metal mask etching of silicon
    • 金属掩模蚀刻硅
    • US06491835B1
    • 2002-12-10
    • US09467560
    • 1999-12-20
    • Ajay KumarAnisul KhanWei LiuJohn ChaoJeff Chinn
    • Ajay KumarAnisul KhanWei LiuJohn ChaoJeff Chinn
    • H01L2100
    • H01L21/3081
    • The present disclosure provides a method for etching trenches, contact vias, or similar features to a depth of 100 &mgr;m and greater while permitting control of the etch profile (the shape of the sidewalls surrounding the etched opening). The method requires the use of a metal-comprising masking material in combination with a fluorine-comprising plasma etchant. The byproduct produced by a combination of the metal with reactive fluorine species must be essentially non-volatile under etch process conditions, and sufficiently non-corrosive to features on the substrate being etched, that the substrate remains unharmed by the etch process. Although aluminum is a preferred metal for the metal-comprising mask, other metals can be used for the masking material, so long as they produce an essentially non-volatile, non-corrosive etch byproduct under etch process conditions. By way of example, and not by way of limitation, metallic materials recommended for the mask include aluminum, cadmium, copper, chromium, gallium, indium, iron, magnesium, manganese, nickel, and combinations thereof. In particular, aluminum in combination with copper or magnesium is particularly useful, where the copper or magnesium content is less than about 8% by weight, and other constituents total less than about 2% by weight. The plasma feed gas includes at least one fluorine-containing compound such as nitrogen trifluoride (NF3), carbon tetrafluoride (CF4), and sulfur hexafluoride (SF6), by way of example and not by way of limitation. Oxygen (O2), or an oxygen-comprising compound, or hydrogen bromide (HBr), or a combination thereof may be added to the plasma feed gases to help provide a protective layer over etched sidewalls, assisting in profile control of the etched feature.
    • 本公开提供了一种用于将沟槽,接触通孔或类似特征蚀刻至100μm和更大深度的方法,同时允许控制蚀刻轮廓(围绕蚀刻开口的侧壁的形状)。 该方法需要使用含金属的掩模材料与含氟等离子体蚀刻剂的组合。 由金属与反应性氟物质的组合产生的副产物在蚀刻工艺条件下必须基本上是非挥发性的,并且对被蚀刻的衬底上的特征具有足够的非腐蚀性,衬底保持不受蚀刻过程的伤害。 虽然铝是用于含金属掩模的优选金属,但是其它金属可以用于掩模材料,只要它们在蚀刻工艺条件下产生基本上非挥发性,非腐蚀性的蚀刻副产物即可。 作为示例而非限制,推荐用于掩模的金属材料包括铝,镉,铜,铬,镓,铟,铁,镁,锰,镍及其组合。 特别地,与铜或镁组合的铝是特别有用的,其中铜或镁含量小于约8重量%,其它组分总计小于约2重量%。 作为示例而非限制,等离子体进料气体包括至少一种含氟化合物如三氟化氮(NF 3),四氟化碳(CF 4)和六氟化硫(SF 6)。 可以将氧(O 2)或含氧化合物或溴化氢(HBr)或其组合添加到等离子体进料气体中以帮助在蚀刻的侧壁上提供保护层,有助于蚀刻特征的轮廓控制。