会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Method for packing and filtering geophysical events to retrieve therefrom data on the type of subsoil
    • 用于包装和过滤地球物理事件以从其中检索底土类型的数据的方法
    • US07289910B2
    • 2007-10-30
    • US10527082
    • 2003-08-18
    • Olivier VoutayFrédérique FournierJean-Jacques Royer
    • Olivier VoutayFrédérique FournierJean-Jacques Royer
    • G01V1/28G01V9/00G01V11/00
    • G01V1/28
    • The invention relates to a method for packing and filtering geophysical events read on multi-domain records, with distribution of said events into families each having a particular geophysical significance: iso-offset or iso-incidence angle data cubes, elastic parameter cubes derived from a joint stratigraphic inversion and the like, in order to extract therefrom data on the type of subsoil, using a multivariate statistical technique. The method essentially comprises forming, by combination of geophysical variables, synthetic variables much fewer in number, which are obtained by constructing an orthogonal vector base in each of the sets of analysis constituted by the data of each of the families, wherefrom is derived the formation of an orthonormal vector base (new attributes) for filtering and describing said geophysical events. The invention is applicable to geological interpretation or to interpretation of an underground reservoir, from seismic measurements or logs for example.
    • 本发明涉及一种用于包装和过滤在多域记录上读取的地球物理事件的方法,其中将所述事件分布到具有特定地球物理含义的族中:等偏移或等角度数据立方体,衍生自 联合地层反演等,以便使用多元统计技术从其中提取有关底土类型的数据。 该方法基本上包括通过地球物理变量的组合形成数量少得多的合成变量,其通过在由每个家族的数据构成的每组分析中构成正交矢量基础而获得,从而得出其形成 的正交向量基(新属性)用于过滤和描述所述地球物理事件。 本发明适用于例如地震测量或原木的地质解释或解释地下储层。
    • 2. 发明授权
    • Method of measuring local similarities between several seismic trace cubes
    • 测量几个地震轨迹立方体之间的局部相似度的方法
    • US07020558B2
    • 2006-03-28
    • US10770602
    • 2004-02-04
    • Olivier VoutayFrédérique FournierJean-Jacques Royer
    • Olivier VoutayFrédérique FournierJean-Jacques Royer
    • G01V1/28
    • G01V1/32
    • A Method of measuring local similarities between seismic trace cubes (3D survey) obtained from a volume of an underground zone, corresponding to prestack data or to repeated seismic surveys (4D survey). For each point of the volume considered, the method comprises a) extracting, from each seismic trace cube, a volume neighborhood centered on a point, referred to as current point, and consisting of a set of seismic traces in limited number; b) applying an analysis technique referred to as (GPCA) allowing defining synthetic variables; and c) determining a coherence value from the synthetic extracted variables measuring the local similarity between the seismic trace cubes extracted from the volume neighborhood of the current point. The coherence value thus calculated is assigned to the current point. The coherence values of all of the current points form a coherence cube. An application is finer monitoring of the evolution with time of a reservoir under development.
    • 一种测量从地下区域的体积获得的地震轨迹立方体(3D测量)之间的局部相似性的方法,对应于叠前数据或重复地震测量(4D测量)。 对于所考虑的体积的每个点,该方法包括a)从每个地震轨迹立方体中提取以点为中心的称为当前点的体积邻域,并且由一组有限数量的地震轨迹组成; b)应用允许定义合成变量的称为(GPCA)的分析技术; 以及c)从所述合成提取变量中确定测量从当前点的体积邻域提取的地震迹线立方体之间的局部相似度的相干值。 这样计算的相干值被分配给当前点。 所有当前点的相干值形成一个连贯立方体。 一个应用程序是对正在开发的水库的时间进化的更好的监测。
    • 3. 发明授权
    • Method allowing to obtain an optimum model of a physical characteristic in a heterogeneous medium such as the subsoil
    • 允许在异质介质如底土中获得物理特性的最佳模型的方法
    • US06662147B1
    • 2003-12-09
    • US09548431
    • 2000-04-12
    • Frédérique FournierJean-Jacques Royer
    • Frédérique FournierJean-Jacques Royer
    • G06F760
    • G01V1/282G01V11/00G01V2210/66
    • A method for obtaining, by means of an inversion process, an optimum model of a physical characteristic in a heterogeneous medium (the impedance of an underground zone in relation to waves transmitted in the ground for example), by taking as the starting point an a priori model of the physical characterized that is optimized by minimizing a cost function dependent on differences between the optimized model which is sought and the known data, considering the a priori model. Construction of the a priori model comprises correlation by kriging between values of the physical quantity known at different points of the medium along discontinuities (strata directions). Uncertainties about the values of the physical quantity in the a priori model in relation to the corresponding values in the medium follow a covariance model that controls the inversion parameters more quantitatively. The characteristics of the covariance model are defined in connection with the structure of the data observed or measured in the medium. An application of the optimum model is location of hydrocarbon reservoirs.
    • 通过反演处理获得异质介质中的物理特性的最优模型(地下区域的阻抗相对于在地面中传输的波的阻抗)的方法,以起始点为a 物理特征的先验模型通过考虑先验模型,通过最小化取决于所寻求的优化模型与已知数据之间的差异的成本函数来优化。 先验模型的构造包括通过在不连续性(层数方向)处在介质的不同点处已知的物理量的值之间的克里金相关。 关于先验模型中物理量的值与介质中相应值相关的不确定性遵循更加量化控制反演参数的协方差模型。 协方差模型的特征与介质中观察或测量的数据结构有关。 最佳模型的应用是油气藏的位置。
    • 4. 发明申请
    • Method for packing and filtering geophysical events to retrieve therefrom data on the type of subsoil
    • 用于包装和过滤地球物理事件以从其中检索底土类型的数据的方法
    • US20060155470A1
    • 2006-07-13
    • US10527082
    • 2004-03-25
    • Olivier VoutayFrederique FournierJean-Jacques Royer
    • Olivier VoutayFrederique FournierJean-Jacques Royer
    • G01V7/00
    • G01V1/28
    • The invention relates to a method for packing and filtering geophysical events read on multi-domain records, with distribution of said events into families each having a particular geophysical significance: iso-offset or iso-incidence angle data cubes, elastic parameter cubes derived from a joint stratigraphic inversion and the like, in order to extract therefrom data on the type of subsoil, using a multivariate statistical technique. The method essentially comprises forming, by combination of geophysical variables, synthetic variables much fewer in number, which are obtained by constructing an orthogonal vector base in each of the sets of analysis constituted by the data of each of the families, wherefrom is derived the formation of an orthonormal vector base (new attributes) for filtering and describing said geophysical events. The invention is applicable to geological interpretation or to interpretation of an underground reservoir, from seismic measurements or logs for example.
    • 本发明涉及一种用于包装和过滤在多域记录上读取的地球物理事件的方法,其中将所述事件分布到具有特定地球物理含义的族中:等偏移或等角度数据立方体,衍生自 联合地层反演等,以便使用多元统计技术从其中提取有关底土类型的数据。 该方法基本上包括通过地球物理变量的组合形成数量少得多的合成变量,其通过在由每个家族的数据构成的每组分析中构成正交矢量基础而获得,从而得出其形成 的正交向量基(新属性)用于过滤和描述所述地球物理事件。 本发明适用于例如地震测量或原木的地质解释或解释地下储层。
    • 5. 发明授权
    • Method for facilitating recognition of objects, notably geologic objects, by means of a discriminant analysis technique
    • 通过判别分析技术便于识别物体,特别是地质物体的方法
    • US06847895B2
    • 2005-01-25
    • US09949930
    • 2001-09-12
    • Philippe NivletFrédérique FournierJean-Jacques Royer
    • Philippe NivletFrédérique FournierJean-Jacques Royer
    • G06K9/62G06F19/00
    • G06K9/6226G06K9/6278
    • The invention is a method for facilitating recognition of objects, using a discriminant analysis technique to classify the objects into predetermined categories. A learning base comprising objects that have already been recognized and classified into predetermined categories is formed with each category being defined by variables of known statistical characteristics. A classification function using a discriminant analysis technique, which allows distribution among the categories the various objects to be classified from measurements available on a number of parameters, is constructed by reference to the learning base. This function is formed by determining the probabilities of the objects belonging to the various categories by taking account of uncertainties about the parameters as intervals of variable width. Each object is then assigned, if possible, to one or more predetermined categories according to the relative value of the probability intervals.
    • 本发明是一种便于识别对象的方法,使用判别分析技术将对象分类为预定类别。 形成包括已被识别并分类为预定类别的对象的学习基础,每个类别由已知统计特征的变量定义。 使用判别式分析技术的分类功能,其通过参考学习基础来构建,其允许在类别之间分配从多个参数可用的测量中分类的各种对象。 通过考虑作为可变宽度的间隔的参数的不确定性来确定属于各种类别的对象的概率来形成该功能。 然后,如果可能,则根据概率间隔的相对值将每个对象分配给一个或多个预定类别。