会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 2. 发明授权
    • Optimized cathode fill strategy for fuel cell
    • 燃料电池优化阴极填充策略
    • US08697303B2
    • 2014-04-15
    • US12693251
    • 2010-01-25
    • Daniel I. HarrisJoseph Nicholas LovriaMatthew C. KirklinGary M. Robb
    • Daniel I. HarrisJoseph Nicholas LovriaMatthew C. KirklinGary M. Robb
    • H01M8/06H01M8/04
    • H01M8/04455H01M8/04798H01M2250/20Y02T90/32
    • A method for controlling cathode air flow at system start-up by controlling a stack by-pass valve. The method includes determining a concentration of hydrogen in a cathode side of the fuel cell stack. The method also includes determining a volumetric flow rate through a cathode compressor, determining a volumetric flow rate through the cathode side and determining a fraction of volumetric flow rate through the cathode side to the total flow through the compressor. The method determines a modeled hydrogen outlet concentration from the fuel cell stack based on the volumetric flow rate through the compressor, the fraction of volumetric flow rate through the compressor to the total flow through the compressor and the concentration of hydrogen in the cathode side. The method uses a desired fraction of volumetric flow rate through the cathode side and the total flow through the compressor to determine the position of the by-pass valve.
    • 一种通过控制堆叠旁通阀来控制系统启动时的阴极气流的方法。 该方法包括确定燃料电池堆的阴极侧的氢浓度。 该方法还包括确定通过阴极压缩机的体积流量,确定通过阴极侧的体积流量,并确定通过阴极侧的体积流量与通过压缩机的总流量的比例。 该方法基于通过压缩机的体积流量,通过压缩机的体积流量与通过压缩机的总流量的比例以及阴极侧的氢浓度,确定来自燃料电池堆的模型氢出口浓度。 该方法使用通过阴极侧的所需部分体积流量和通过压缩机的总流量来确定旁通阀的位置。
    • 7. 发明授权
    • WVT design for reduced mass and improved sealing reliability
    • WVT设计,减少质量和改善密封可靠性
    • US08091868B2
    • 2012-01-10
    • US12178182
    • 2008-07-23
    • Gary M. RobbSteven G. Goebel
    • Gary M. RobbSteven G. Goebel
    • B01F3/04
    • H01M8/04126Y10T29/494
    • A membrane humidifier for a fuel cell system is disclosed wherein the membrane humidifier includes a plurality of membrane layers, a first pair of spaced apart sealing bars disposed between a first membrane layer and a second membrane layer adjacent to perimeter edges thereof to form a first flow channel, a second pair of spaced apart sealing bars disposed between the second membrane layer and a third membrane layer adjacent to perimeter edges thereof to form a second flow channel, and a plurality of supports, wherein a first support is disposed adjacent the second planar layer and extending between the second pair of spaced apart sealing bars, and a second support is disposed adjacent the third planar layer and extending between the second pair of spaced apart sealing bars.
    • 公开了一种用于燃料电池系统的膜加湿器,其中膜加湿器包括多个膜层,第一对间隔开的密封条,设置在与其周边边缘相邻的第一膜层和第二膜层之间,以形成第一流体 通道,第二对间隔开的密封条,设置在第二膜层和与其周边边缘相邻的第三膜层之间以形成第二流动通道,以及多个支撑件,其中第一支撑件邻近第二平面层设置 并且在所述第二对间隔开的密封条之间延伸,并且第二支撑件邻近所述第三平面层设置并且在所述第二对间隔开的密封条之间延伸。
    • 8. 发明申请
    • OPTIMIZED CATHODE FILL STRATEGY FOR FUEL CELL
    • 燃料电池优化阴极填充策略
    • US20110183225A1
    • 2011-07-28
    • US12693251
    • 2010-01-25
    • Daniel I. HarrisJoseph Nicholas LovriaMatthew C. KirklinGary M. Robb
    • Daniel I. HarrisJoseph Nicholas LovriaMatthew C. KirklinGary M. Robb
    • H01M8/00H01M8/04
    • H01M8/04455H01M8/04798H01M2250/20Y02T90/32
    • A method for controlling cathode air flow at system start-up by controlling a stack by-pass valve. The method includes determining a concentration of hydrogen in a cathode side of the fuel cell system. The method also includes determining a volumetric flow rate through a cathode compressor, determining a volumetric flow rate through the stack cathode and determining a fraction of volumetric flow rate through the cathode to the total flow through the compressor. The method determines a modeled hydrogen outlet concentration from the fuel cell stack based on the volumetric flow rate through the compressor, the fraction of volumetric flow rate through the compressor to the total flow through the compressor and the concentration of hydrogen in the cathode. The method uses a desired fraction of volumetric flow rate through the cathode and the total flow through the compressor to determine the position of the by-pass valve.
    • 一种通过控制堆叠旁通阀来控制系统启动时的阴极气流的方法。 该方法包括确定燃料电池系统的阴极侧的氢浓度。 该方法还包括确定通过阴极压缩机的体积流量,确定通过堆叠阴极的体积流量,并确定通过阴极的体积流量与通过压缩机的总流量的比例。 该方法基于通过压缩机的体积流量,通过压缩机的体积流量与通过压缩机的总流量的比例以及阴极中的氢浓度,确定来自燃料电池堆的模拟氢出口浓度。 该方法使用通过阴极的体积流量的期望分数和通过压缩机的总流量来确定旁通阀的位置。
    • 9. 发明申请
    • SHUTDOWN OPERATIONS FOR A SEALED ANODE FUEL CELL SYSTEM
    • 密封阳极燃料电池系统的关闭操作
    • US20090263696A1
    • 2009-10-22
    • US12103953
    • 2008-04-16
    • Gary M. Robb
    • Gary M. Robb
    • H01M8/04
    • H01M8/0488H01M8/04223H01M8/04231H01M8/04238H01M8/04303H01M8/04559H01M8/04589H01M8/04753H01M8/04953
    • Processes to shut down a fuel cell system are described. In one implementation (400), fuel (H2) and oxidizer (air) flow is halted and the system's anode region (305) is sealed. A load (215) is then engaged across the system's fuel cell stack (205) so as to deplete much of the fuel in the stack's sealed anode region (305). The stack (205) is monitored to determine when the load should be disengaged. (215). Once the load is disengaged, fluid communication between the system's anode and cathode regions is established. The vacuum created in the anode region (305) as a consequence of consuming H2 therein, pulls nitrogen enriched gas from the cathode region (310) into the anode region (305). When substantially all of the H2 has been depleted from the anode region (305), no pressure difference exists between the anode and cathode regions and fluid communication between the two is severed.
    • 描述关闭燃料电池系统的过程。 在一个实施方案(400)中,停止燃料(H2)和氧化剂(空气)流,并且系统的阳极区域(305)被密封。 然后,负载(215)跨过系统的燃料电池堆(205)接合,以消耗堆叠的密封阳极区域(305)中的大部分燃料。 监视堆(205)以确定负载何时应该分离。 (215)。 一旦负载脱离,系统的阳极和阴极区域之间的流体连通就建立起来了。 由于在其中消耗H 2而在阳极区(305)中产生的真空,将富氮气体从阴极区(310)吸入阳极区(305)。 当基本上所有的H 2已经从阳极区域(305)中耗尽时,在阳极和阴极区域之间不存在压差,并且两者之间的流体连通被切断。